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1. Let a1, a2, . . . , a2021 be a sequence, where each ai is a positive factor of 2021. How many possible values are there for
the product a1a2 · · · a2021?

Proposed by: Kevin Ren

Answer: 20222

Each ai is 1, 43, 47, or 43 · 47. Thus, the product a1a2 · · · a2021 = 43m47n where 0 ≤ m,n ≤ 2021. As a result, there are
20222 possible values for the product.

2. A four-digit positive integer is called doubly if its first two digits form some permutation of its last two digits. For
example, 1331 and 2121 are both doubly. How many four-digit doubly positive integers are there?

Proposed by: Kyle Lee

Answer: 171

Note that such an integer can have at most two distinct digits, so consider the set of two digits. If they are both
nonzero and distinct, then there are

(9
2

)
· 4 = 144 such numbers. If they are both nonzero but the same, then there

are 9 such numbers. Lastly, if one of the digits is 0, then there are 9 · 2 = 18 such numbers. The requested answer is
144 + 9 + 18 = 171.

3. Let f(n) be a sequence of integers defined by f(1) = 1, f(2) = 1, and f(n) = f(n − 1) + (−1)nf(n − 2) for all integers
n ≥ 3. What is the value of f(20) + f(21)?

Proposed by: Kyle Lee

Answer: 89

We have
f(2n) = f(2n− 1) + f(2n− 2) = 2f(2n− 2)− f(2n− 3) = f(2n− 2) + f(2n− 4),

and f(2) = 1, f(3) = 0, f(4) = 1, so f(2n) is just the nth Fibonacci number. Therefore, the answer is f(20) + f(21) =
f(22) = F11 = 89.

4. I roll three special six-sided dice. Each die has faces labeled U, S, M, C, A, or *. The star can represent any of U, S, M,
C, A. What is the probability that I can arrange the dice to spell out USA? (For instance, A*U is valid, but UU* is not
valid.)

Proposed by: Kevin Ren

Answer: 17
108

We casework on the number of stars on the dice.

Three stars: There is one valid way to have three stars.

Two stars: There are three choices for the die containing the non-star, and three choices for the non-star (U, S, or A),
for a total of 3 · 3 = 9 choices.

One star: There are three choices for the die containing the star, and 3 · 2 = 6 ways to choose two distinct letters for the
non-star dice, for a total of 3 · 6 = 18 choices.

Zero stars: There are 3! = 6 ways to arrange U, S, A on the three dice in some order.

There are 1 + 9 + 18 + 6 = 34 cases. Dividing by the total number of possibilities, 63 = 216, we arrive at an answer of
17
108

.

5. Let A denote the set of all the positive integer divisors of 30. For each nonempty subset s ⊆ A, define p(s) to be the
product of the elements in s. Finally, let B denote the set of all possible remainders when p(s) is divided by 30. How
many (distinct) elements are in B?

Proposed by: Kyle Lee

Answer: 11

The factors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. Let

A = {1, 30}, B = {2, 15}, C = {3, 10}, D = {5, 6}.

Note that we can pick at most one number from each set to avoid overcounting 0 mod 30.

Numbers from only one set: {0, 1, 2, 3, 5, 6, 10, 15}. There are τ(30) = 8 of them. Ignore A from this point forward.

Numbers from two sets and not in case above: {12, 18, 20}. There are 3 here.

Numbers from three sets and not in cases above: ∅. There are only 3 cases to check as any product with factors of 2, 3, 5
will be 0 mod 30.

Hence, the answer is 8 + 3 = 11.



6. Let ABCD be a unit square. Construct point E outside ABCD such that AE =
√

2 ·BE and ∠AEB = 135◦. Also, let
F be the foot of the perpendicular from A to line BE. Find the area of 4BDF .

Proposed by: Derek Zhu

Answer: 3
5
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F

E
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Solution 1. We want to calculate the expression 1
2
·BD ·BF ·sin∠DBF . BD =

√
2 as it’s the diagonal of the square, and

BF = 1 ·cos(∠ABF ) in 4ABF . Also, ∠DBF = ∠ABF +45◦. Set BE = x. Then AE = x
√

2 and AEF is a 45−45−90
right triangle, so AF = FE = x. By Pythagorean theorem on ABF , we see that x2+(2x)2 = 1, so x = 1√

5
. Furthermore,

sin∠ABF = x = 1√
5

and BF = 2x = 2√
5

. Thus, sin∠DBF = sin∠ABF + 45◦ = (sin∠ABF + cos∠ABF ) ·
√
2

2
= 3√

10
.

So our final expression is 1
2
·
√

2 · 2√
5
· 3√

10
= 3

5
.

Solution 2. As in solution 1, we compute BE = 1√
5

and BF = 2√
5

. Let Γ be the circumcircle of ABCD. By inscribed

angles, we see that E lies on Γ, and ∠BED = 90◦. Thus, by Pythagorean theorem, we see that BD =
√

2 and DE = 3√
5

.

The area of BDF is 1
2
BF ·DE = 3

5
.

7. Find the expected value of max(min(a, b),min(c, d),min(e, f)) over all permutations (a, b, c, d, e, f) of (1, 2, 3, 4, 5, 6).

Proposed by: Derek Zhu

Answer: 19
5

If we tried to find max(min(w, x),min(y, z)), where (w, x, y, z) is a permutation of (c, d, e, f), then there’s a 2
3

chance it’s

d and a 1
3

chance it’s e, as this solely depends on whether c and d are paired together or not.

WLOG a = 1 and do casework on b: If b = 2, answer is 4 · 2
3

+ 5 · 1
3

= 13
3

. If b = 3, answer is 4 · 2
3

+ 5 · 1
3

= 13
3

. If b = 4,

answer is 3 · 2
3

+ 5 · 1
3

= 11
3

. If b = 5, answer is 3 · 2
3

+ 4 · 1
3

= 10
3

. If b = 6, answer is 3 · 2
3

+ 4 · 1
3

= 10
3

.

Then taking the average, our final answer is ( 13
3

+ 13
3

+ 11
3

+ 10
3

+ 10
3

)/5 = 19
5

.

8. Let ABCD be a parallelogram with AB = CD = 16 and BC = AD = 24. Suppose the angle bisectors of ∠A and ∠D
intersect BC at E and F, respectively. Moreover, suppose AE and DF intersect at P. Given that the sum of the areas
of quadrilaterals ABFP and DCEP is 100, compute the area of the parallelogram.

Proposed by: Kyle Lee

Answer: 1200
7

A

B C

D

EF

P

Note that both ∠BAE = ∠BEA and ∠CDF = ∠CFD together implies that BF = FE = EC = 8, so it follows that
ABFP and DCEP have equal areas. If we let h be the distance from P to BC, then using EPF ∼ APD, we see that
4h is the vertical distance between AD and BC. Thus, we have

8h

16(4h)
=

[FPE]

50 + [FPE]
,

so [FPE] = 50
7
. Then the area of the parallelogram is simply (32 + 1)( 50

7
) + 100 = 1200

7
.



9. For how many two-digit integers n is 13 | 1− 2n − 3n + 5n?

Proposed by: Kevin Ren

Answer: 46

Since 2n ≡ 15n (mod 13), we get 13 | (3n − 1)(5n + 1), so n is 2 mod 4 or divisible by 3. There are 23 two-digit integers
that are 2 mod 4, 30 two-digit integers that are divisible by 3, and 7 two-digit integers that are 2 mod 4 and divisible by
3. By the Principle of Inclusion-Exclusion, there are 23 + 30− 7 = 46 such integers.

10. Find the sum of all positive integers n ≤ 1000 with the property that for every prime number p dividing n, we have that
2p− 1 also divides n.

Proposed by: Kyle Lee

Answer: 5806

Clearly n = 1 is a solution. Assume n > 1.

If p is a prime divisor of n, then p(2p− 1) divides n. Thus, p(2p− 1) ≤ 1000, which forces p ≤ 19.

If 7 | n, then 13 | n, 25 | n, which means n ≥ 7 · 13 · 25 > 1000. 1

If 11 | n, then 21 | n, 7 | n, 13 | n, which means n ≥ 11 · 13 · 21 > 1000.

If 13 | n, then 25 | n, 9 | n, which means n ≥ 13 · 25 · 9 > 1000.

If 17 | n, then 33 | n, 11 | n, which is bad from above.

If 19 | n, then 37 | n, 73 | n, which means n ≥ 19 · 37 · 73 > 1000.

Thus, the largest prime factor of n is 5. From here, it is easy to see that either either n = 2 · 32 · 5 · a, where a contains
no prime factors other than 2, 3, 5 or n = 32 · 5 · b, where b contains no prime factors other than 3, 5. Then, the answer
is 90 + 180 + 270 + 360 + 450 + 540 + 720 + 810 + 900 + 45 + 135 + 225 + 405 + 675 + 1 = 5806.

11. Let f1(x) = x2 − 3 and fn(x) = f1(fn−1(x)) for n ≥ 2. Let mn be the smallest positive root of fn, and Mn be the
largest positive root of fn. If x is the least number such that Mn ≤ mn · x for all n ≥ 1, compute x2.

Proposed by: Kevin Ren

Answer: 4 +
√

13

The positive roots of fn are

√
3±

√
3±

√
3± · · · ±

√
3, where there are n square roots. To get Mn, we take all plus

signs. To get mn, we take the first sign to be minus, and all remaining signs to be plus.

We also compute x =
√

3 +
√

3 + · · · as follows: we have x =
√

3 + x, so x2 − x− 3 = 0, and x = 1+
√

13
2

.

Thus, x =

√
3+
√

3+
√
3+···√

3−
√

3+
√
3+···

=

√
3+ 1+

√
13

2√
3− 1+

√
13

2

=
√

4 +
√

13.

12. Find the sum of the three smallest positive integers N such that N has a units digit of 1, N2 has a tens digit of 2, and
N3 has a hundreds digit of 3.

Proposed by: Kyle Lee

Answer: 1883

Let N = 100a+ 10b+ 1, where a ≥ 0 and b is a digit. Then

N2 ≡ (10b+ 1)2 ≡ 20b+ 1 (mod 100).

Since N2 has tens digit 2, we must have b = 1 or b = 6.

Case 1. b = 1. Then
N3 = (100a+ 11)3 ≡ 300a+ 113 ≡ 300a+ 331 (mod 1000).

Since N3 has hundreds digit 3, a must have units digit 0.

Case 2. b = 6. Then
N3 = (100a+ 61)3 ≡ 300a+ 613 ≡ 300a+ 981 (mod 1000).

Since N3 has hundreds digit 3, a must have units digit 8.

The three smallest values of N are then 11, 861, and 1011, for an answer of 11 + 861 + 1011 = 1883.

13. An ant is currently located in the center (vertex S) of the adjoined hexagonal configuration, as shown in the figure below.
Each minute, it walks along 1 of the 15 possible edges, traveling from one vertex to another. How many ways are there
for the ant to be back to its original position after 2020 minutes?



Proposed by: Kyle Lee

Answer: 1
5

(3 + 2 · 61010)

Relabel the vertices such that A = S is the center, B is the set of vertices with distance 1 from A, D is the set of vertices
with distance 2 from A, and C is the set of vertices with distance 3 from A. Then we have the following recursion:

An = Bn−1 +Bn−1 +Bn−1

Bn = Dn−1 +Dn−1 +An−1

Cn = Dn−1 +Dn−1

Dn = Cn−1 +Bn−1.

It suffices to find A2020. Now, we have

An = 3Bn−1

= 3(An−2 + Cn−1)

= 3An−2 + 3Cn−1

= 3An−2 + 6Dn−2

= 3An−2 + 6Cn−3 + 6Bn−3

= 3An−2 + 6(4Dn−4 +An−4)

= 3An−2 + 6An−4 + 24Dn−4

= 3An−2 + 6An−4 + 4An−2 − 12An−4

= 7An−2 − 6An−4.

Now, define the new sequence bn = A2n so that we have bn = 7bn−1−6bn−2. The characteristic polynomial is λ2−7λ+6 =

(λ− 6)(λ− 1), so we have bn = p · 1n + q · 6n. It is easy to see that b0 = 1 and b1 = 3, so we have (p, q) = (
3

5
,

2

5
). Then

A2020 = b1010 =
3 + 2 · 61010

5
.

14. Derek the Dolphin and Kevin the Frog are playing a game where they take turns taking coins from a stack of N coins,
except with one rule: The number of coins someone takes each turn must be a power of 6. The person who cannot
take any more coins loses. If Derek goes first, how many integers N from 1 to 62021 inclusive will guarantee him a win?
(Example: If N = 37, then a valid sequence of moves is: Derek takes one coin, Kevin takes 36 coins, and Kevin wins.)

Proposed by: Derek Zhu

Answer:
4(62021+1)

7
(or

4(62021−6)
7

+ 1)

We conclude that N ≡ 0, 2, 4 (mod 7) seem to be losses and N ≡ 1, 3, 5, 6 (mod 7) seem to be wins. We can prove this
by induction. For N ≤ 5, everyone is forced to only take 1 coin per turn and Derek wins if N is odd and loses if N is
even. For N = 6, Derek takes 6 coins and wins. For general N > 6, if N ≡ 1, 3, 5 (mod 7), Derek can take one coin
and force Kevin into a losing position (0, 2, 4 (mod 7)). If N ≡ 6 (mod 7), Derek can take 6 coins and force Kevin into
a losing position (0 (mod 7)). If N ≡ 0, 2, 4 (mod 7), whether Derek takes a number of coins that are 1 or 6 (mod 7),



Kevin can take the number of coins that’s 6 or 1 (mod 7) and Derek is back in a losing position after Kevin’s turn (0, 2, 4
(mod 7)).

(Note: due to an ambiguity in the problem, we are also accepting an answer of
4(62021−6)

7
+ 1, which corresponds to

the problem where it’s not allowed to take one coin. This new problem can be solved in the same way, except we should
consider mod 42 instead of mod 7.)

15. Find the sum of all real values of A such that the equation Axy+ 25x2 + 25y2− 20x− 22y+ 5 = 0 has a unique solution
in real numbers (x, y).

Proposed by: Derek Zhu

Answer: 88

The values are A = 40 and A = 48. Rearrange the equation to get 25x2 + (Ay − 20)x + (25y2 − 22y + 5) = 0, and let
discriminant with respect to x equal to zero (as the equation must have a unique solution (x, y)) to get (Ay − 20)2 =
4 · 25 · (25y2 − 22y+ 5). Rearrange this to get (A2 − 2500)y2 + (−40A+ 2200)y− 100 = 0, and let the discriminant with
respect to y equal to zero to get (A− 40)(A− 48) = 0. Thus, the sum of all values of A is 40 + 48 = 88.

16. Let C be a right circular cone with height
√

15 and base radius 1. Let V be the vertex of C, B be a point on the
circumference of the base of C, and A be the midpoint of V B. An ant travels at constant velocity on the surface of the
cone from A to B and makes two complete revolutions around C. Find the distance the ant travelled.

Proposed by: Kevin Ren

Answer: 2
√

3 + 2
√

6

O

B

A D
E

Unwrap the cone so that it becomes a circular sector with radius
√

12 + (
√

15)2 = 4 and angle θ = π
2

because the sector’s

circumference is 2θ · 4 = 2π · 1. The sector unwrapping consists of two segments and an arc; let A be the midpoint of one
segment and B be on the other segment. Let D be the point on the same segment as B that the ant hits after the first
revolution and E be that corresponding point on the same segment as A. Since 4V AD and 4V EB are similar right
triangles, we have V A

VD
= V E

V B
and V A = 2 and V B = 4, so V D = V E = 2

√
2. Then since ∠AVD = ∠EV B = π

2
, we

know AD = 2
√

3 and EB = 2
√

6. The ant travelled distance AD + EB, which is 2
√

3 + 2
√

6.

17. Let X1X2X3X4 be a quadrilateral inscribed in circle Ω such that 4X1X2X3 has side lengths 13, 14, 15 in some order.
For 1 ≤ i ≤ 4, let li denote the tangent to Ω at Xi, and let Yi denote the intersection of li and li+1 (indices taken
modulo 4). Find the least possible area of Y1Y2Y3Y4.

Proposed by: Derek Zhu

Answer: 12675/44

WLOG let ABC be a triangle with AB = 13, BC = 14, CA = 15, and let X be any point on the circumference

of ABC. WLOG let X be on the smaller arc ÂC and other cases are analogous. If R is the radius and O is the
circumcenter, then the area of the quadrilateral can be written as the sum of cyclic quadrilaterals OAY1B, OBY2C,
OCY3X, and OXY4A, which are all pairs of congruent right triangles, each with one leg length as the radius. Thus,



the sum of these four quadrilaterals can be evaluated as R2(tan(∠ACB) + tan(∠BAC) + tan(∠XBC) + tan(∠XBA)).
Note that since tan(∠ACB) and tan(∠BAC) are fixed, it suffices to minimize tan(∠XBC) + tan(∠XBA), which occurs
when ∠XBC = ∠XBA as tan is convex on [0, π

2
). So whatever arc X is on, the quadrilateral area is minimized when

X is on the midpoint of the arc. The overall minimum is achieved when X is on the midpoint of minor arc of AC,
because ∠ABC is the largest of the three, so tan(∠ABC)− (tan(∠XBC) + tan(∠XBA)) is the largest among all three
analogous calculations. Some calculations show R = 65

8
, tan(∠ACB) = 4

3
, tan(∠CAB) = 56

33
, and tan(∠ABC) = 12

5
,

and tan(∠XBC) = tan(∠XBA) = tan(∠ABC
2

) = 2
3

. Thus, our answer is
(
65
8

)2 ( 4
3

+ 56
33

+ 2
3

+ 2
3

)
= 12675

44
.

18. Charlie has a fair n-sided die (with each face showing a positive integer between 1 and n inclusive) and a list of n
consecutive positive integer(s). He first rolls the die and if the number showing on top is k, he then uniformly and
randomly takes a k-element subset from his list and calculates the sum of the numbers in his subset. Given that the
expected value of this sum is 2020, compute the sum of all possible values of n.

Proposed by: Kyle Lee

Answer: 78

Let a be the starting number of the list and suppose t = n− 1 so that the list has t+ 1 terms. The expected value of k

is
1+(t+1)

2
= t+2

2
, and the expected value of a term in the list is

a+(a+t)
2

= 2a+t
2

. Thus, the expected value of the sum

of the k-element subset is t+2
2
· 2a+t

2
= 1

4
(t+ 2)(2a+ t).

Hence, we have (t+ 2)(2a+ t) = 8080 = 24 · 5 · 101. Clearly a > 1 since 8080 is not a perfect square, so 2a+ t > t+ 2.
Moreover, it is easy to see that both factors have the same parity and thus must be even. Then suppose 2a+ t = 2p and
2 + t = 2q, where p > q are factors of 22 · 5 · 101, so that t = 2q − 2. From here, it easy to see that the possible values
of q are 1, 2, 4, 5, 10, 20 (the corresponding values of t are 0, 2, 6, 8, 18, 38). Thus, the sum of all possible values of n is
2(1 + 2 + 4 + 5 + 10 + 20)− 6(2) + 6 = 78.

19. Let ABC be an equilateral triangle with unit side length and circumcircle Γ. Let D1, D2 be the points on Γ such
that BDi = 3CDi. Let E1, E2 be the points on Γ such that CEi = 3AEi. Let F1, F2 be the points on Γ such that
AFi = 3BFi. Then points D1, D2, E1, E2, F1, F2 are the vertices of a convex hexagon. What is the area of this hexagon?

Proposed by: Kevin Ren

Answer: 181
√
3

364

C B

A

D1

D2

O

F1

E1

F2

E2

Let CD1 = a, CD2 = b, and suppose ∠BD1C = 60◦,∠BD2C = 120◦. By Law of Cosines on BD1C, we get a2(1+9−3) =
1, so a = 1√

7
. Similarly, b2(1 + 9 + 3) = 1, so b = 1√

13
.

By Ptolemy’s theorem on BD1CD2, we get x = D1D2 = 6ab = 6√
91

, so x2 = 36
91

. We also observe D1E1F1 is equilateral

and also inscribed in Γ, so D1F1 = BC = 1.

Let y = D2F1. Then by Law of Cosines on D1D2F1, we get x2 + xy + y2 = 1, so y =
−x+
√

4−3x2

2
. Thus, xy =

−x2+
√
x2(4−3x2)

2
= 1

2

(
− 36

91
+
√

36
91
· 256

91

)
= 30

91
. By dissecting the hexagon into D1E1F1 and three smaller triangles,

we see that the area of the hexagon is
√
3

4
(1 + 3xy) = 181

√
3

364
.

20. Let τ(n) be the number of positive divisors of n, let f(n) =
∑
d|n τ(d), and let g(n) =

∑
d|n f(d). Let Pn be the product

of the first n prime numbers, and let M = P1P2 · · ·P2021. Then
∑
d|M

1
g(d)

= a
b

, where a, b are relatively prime positive

integers. What is the remainder when τ(ab) is divided by 2017? (Here,
∑
d|n means a sum over the positive divisors of

n.)

Proposed by: Kevin Ren



We compute τ(pn) = n+ 1, f(pn) = 1 + 2 + · · ·+ n+ 1 =
(n+2

2

)
, and (by Hockey Stick identity) g(pn) =

(n+3
3

)
. Thus,

∑
d|pn

1

g(d)
=

n∑
k=0

6

(k + 1)(k + 2)(k + 3)

= 3

n∑
k=0

(
1

(k + 1)(k + 2)
−

1

(k + 2)(k + 3)

)

= 3

(
1

2
−

1

(n+ 2)(n+ 3)

)
=

3(n+ 1)(n+ 4)

2(n+ 2)(n+ 3)
.

Let the n-th prime be pn. Then M = p20211 p20202 · · · p2021, so our answer is
∏2021
n=1

3(n+1)(n+4)
2(n+2)(n+3)

=
(
3
2

)2021 · 2
2023

· 2025
4

=

32021·2025
22022·2023 = 32025·52

22022·7·172 . Thus, τ(ab) = 2026 · 2023 · 32 · 2, so the remainder upon division by 2017 is 9 · 6 · 9 · 2 = 972 .

21. Sarah has five rings (numbered 1 through 5), each with ten rungs labeled 1 through 10. Rung i is adjacent to rung i+ 1
for 1 ≤ i ≤ 9, and rung 10 is adjacent to rung 1. How many ways can Sarah paint some (possibly none) of the rungs red
such that in each ring, the red rungs form a contiguous block, and the total number of red rungs across the five rings is
divisible by 11? (For example, Sarah can paint rungs 8, 9, 10, 1, 2 on ring 1, rungs 3, 4, 5 on ring 2, no rungs on rings 3
and 4, and rungs 1, 2, 3 on ring 5.)

Proposed by: Kevin Ren, Derek Zhu, Kyle Lee, and Freya Edholm

Answer: 925+21·95
11

For a given ring, there is 1 way to color zero rungs red, 1 way to color all ten rungs red, and 10 ways to color k rungs red,
for 1 ≤ k ≤ 9. Thus, our answer is the sum of the x11a coefficients in (1+10x+10x2 + · · ·+10x9 +x10)5. This is done by
taking the roots of unity filter, for ω a primitive 11-th root of unity: 1

11

∑10
i=0(1 + 10ωi + 10ω2i + · · ·+ 10ω9i +ω10i)5 =

1
11

(925 − 95
∑10
i=1(1 + ωi)5. By roots of unity filter in reverse, we know

∑10
i=0(1 + ωi)5 is 11 times the sum of the

x0, x11, · · · coefficients of (1 + x)5, which yields 11 · 1 = 11. Hence
∑11
i=1(1 + ωi)5 = 11 − 32 = −21 and the answer is

925+21·95
11

.

22. Let ABC be a triangle with AB = 20, AC = 21, and ∠BAC = 90◦. Suppose Γ1 is the unique circle centered at B and
passing through A, and Γ2 is the unique circle centered at C and passing through A. Points E and F are selected on Γ1

and Γ2, respectively, such that E,A, F are collinear in that order. The tangent to Γ1 at E and the tangent to Γ2 at F
intersect at P . Given that PA⊥BC, compute the area of PBC.

Proposed by: Kyle Lee and Kevin Ren

Answer: 1261
2

A

B C

D

E
F

P

Since PA⊥BC, we have P lies on the radical axis of Γ1 and Γ2, so EP = FP . If D is the reflection of A over BC, then
by tangency, we have ∠PEF = ∠EDA and ∠PFE = ∠FDA. Thus, since PEF is isosceles, we have ∠PEF = ∠PFE,
and so ∠EDA = ∠FDA. Now by a well-known spiral similarity lemma, we have DEF ∼ DBC, so ∠EDF = ∠BDC =



∠BAC = 90◦. Since ∠EDF = ∠EDA + ∠FDA, we get ∠EDA = ∠FDA = 45◦, so ∠EBA = 2∠EDA = 90◦ and
∠ACF = 2∠FDA = 90◦. Thus, EBA andACF are 45−45−90 right triangles, so EA = 20

√
2, FA = 21

√
2. Furthermore,

∠PEF = ∠EDA = 45◦ and ∠PFE = ∠FDA = 45◦, so PEF is also a 45 − 45 − 90 right triangle. If we let K be the

midpoint of EF , then KA = 1
2

and KP = EF
2

= 41
2

, so by Pythagorean theorem, we get PA =
√

( 1
2

)2 + ( 41
2

)2 = 29.

Another Pythagorean theorem on ABC tells us BC = 29. Finally, the area of PBC is the sum of the areas of ABC and
PBAC, which equals 20·21+29·29

2
= 1261

2
.

23. Given real numbers x, y, z, w such that (x+y+2z)(x+z+3w) = 1, what is the minimum possible value of x2+y2+z2+w2?

Proposed by: Kevin Ren

Answer: 2
√

66−6
57

The key idea is to apply AM-GM and Cauchy-Schwarz in a clever way.

Lemma: Let ~a,~b, ~v be vectors. 2(~v · ~a)(~v ·~b) ≤ (|~a||~b|+ ~a ·~b)|~v|2

Proof. Without loss of generality, let |~a| = |~b| = 1. By AM-GM and Cauchy-Schwarz, we get

4(~v · ~a)(~v ·~b) ≤ (~v · (~a+~b))2 ≤ |~v|2|~a+~b|2 = |~v|2(|~a|2 + |~b|2 + 2~a ·~b) = |~v|2(2 + 2~a ·~b).

Dividing by 2 gives the desired result.

Using Lemma, we get 2 = 2(x+ y+ 2z)(x+ z+ 3w) ≤ (
√

66 + 3)(x2 + y2 + z2 +w2), so the answer is 2√
66+3

= 2
√
66−6
57

.

24. The center cell of a 5 × 5 square grid is removed. Determine the number of ways to color the remaining 24 cells one of
four colors (cyan, magenta, yellow, and black) such that any 2× 2 square of cells not containing the center cell contains
cells of all four colors.

Proposed by: Ankan Bhattacharya

Answer: 4608

Solution by Ben Qi.

Let ci,j denote the color at cell (i, j) for all 0 ≤ i ≤ 4, 0 ≤ j ≤ 4 (aside from (i, j) = (2, 2), which is missing).

We will color the cells in the following order:

(a) First, the cells with 0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

(b) Second, the cells with 3 ≤ i ≤ 4, 3 ≤ j ≤ 4.

(c) Third, the cells with 3 ≤ i ≤ 4, 0 ≤ j ≤ 1 or 0 ≤ i ≤ 1, 3 ≤ j ≤ 4.

(d) Finally, the cells with i = 2 or j = 2.

Each step in the above order contributes some multiplicative factor, and the final answer will be equal to the product of
all these factors.

To start off, the first step contributes a factor of 4! = 24.

We claim that the third step always contributes a factor of either 0 or 1 depending on the colors in the second step; i.e.,
fixing the colors of the bottom-left and top-right 2× 2 squares also fixes the colors of the bottom-right and top-left 2× 2
squares as well (assuming it is possible to complete the coloring).

In order to satisfy the given condition for the bottom-right portion of the grid (2 ≤ i ≤ 4, 0 ≤ j ≤ 2), we must have all
of the following set equalities:

{c0,0, c0,1} = {c2,0, c2,1} = {c4,0, c4,1}
{c1,0, c1,1} = {c1,0, c3,1}

{c3,0, c4,0} = {c3,2, c4,2} = {c3,4, c4,4}
{c3,1, c4,1} = {c3,3, c4,3}

This implies that if we know the positions of the magenta cells in both the bottom-left and top-right 2× 2 squares (for
example, say (i0, j0) = (0, 1) and (i1, j1) = (3, 4) and ci0,j0 = ci1,j1 = (magenta)), then we may determine the position
of the magenta cell in the bottom-right square; i.e., c4−i0,4−j1 = (magenta) (in this example, (4 − i0, 4 − j1) = (4, 0)).
Similar reasoning determines the position of the magenta cell in the top-left 2× 2 square; i.e., c4−i1,4−j0 = (magenta).

So both a necessary and set of conditions that the colors of the top-right 2× 2 squares must satisfy is as follows:

• c3,3, c4,3, c3,4, c4,4 are all distinct.

• {c0,0, c0,1} 6= {c3,3, c4,3} and {c0,0, c0,1} 6= {c3,4, c4,4} (so it is possible to color the bottom-right 2× 2 square).

• {c0,0, c1,0} 6= {c3,3, c3,4} and {c0,0, c1,0} 6= {c4,3, c4,4} (so it is possible to color the top-left 2× 2 square).

To count the number of ways to color the top-right 2 × 2 square after the bottom-left 2 × 2 square has already been
colored such that all of these conditions are satisfied, first, choose the ordered pair (i, j) satisfying 3 ≤ i, j ≤ 4 such that
ci,j = c0,0 (contributing a factor of four). Then there are always three ways to color in the remaining three cells of the
top-right 2 × 2 square such that {c0,0, c0,1} 6= {ci,j , c7−i,j} and {c0,0, c1,0} 6= {ci,j , ci,7−j}. So the second and third
steps combined contribute a factor of 4 · 3 = 12.

Finally, the fourth step contributes a factor of 24 = 16, as we know the values of each of the following sets of colors:
{c2,0, c2,1}, {c2,3, c2,4}, {c0,2, c1,2}, {c3,2, c4,2} and each set contributes a factor of two.

So our answer is 24 · 12 · 16 = 4608.



25. Convex equiangular hexagon ABCDEF has AB = CD = EF =
√

3 and BC = DE = FA = 2. Points X,Y, and Z
are situated outside the hexagon such that AEX,ECY, and CAZ are all equilateral triangles. Compute the area of the
region bounded by lines XF, Y D, and ZB.

Proposed by: Kyle Lee

Answer: 7
√

3+6
37

A B

C

DE

FX

Y

Z

RP
Q

Note that by symmetry the region is a smaller equilateral triangle. We will compute its area by taking the area of the
largest equilateral triangle 4XY Z and subtract off three identical triangular regions.

WLOG consider the triangular region with longest side XY. Suppose P = AE ∩XF. Then since ABCDEF is cyclic and
this circle is in fact the inscribed circle of 4XY Z, we have that line FP is a symmedian of 4AFE.

Then if we let Q = XF ∩ Y Z, we have
ZQ

QY
=
AP

PE
= (

2
√

3
)2 =

4

3
. Hence, QY =

6s

7
, where the side length of 4XY Z is

just

2s = 2

√
22 + (

√
3)2 − 2 · 2 ·

√
3 · cos(120) = 2

√
7 + 2

√
3.

Suppose R = XF ∩ Y D. By the ratio lemma, we have
RQ

RX
=

6/7

2
·

3

4
=

9

28
. Lastly, we have by area ratios that

[Y QR]

[Y RX]
=
RQ

RX
=

9

28
, so

[Y RX] =
1

2
(

28

28 + 9
) ·

6

7
· 2 · s2 · sin(60) =

12s2
√

3

37
.

The desired answer is then √
3

4
(2s)2 − 3 ·

12s2
√

3

37
=
s2
√

3

37
=

6 + 7
√

3

37
.

Remark. Once we have
ZQ

QY
=

4

3
, we can simply finish with Routh’s Theorem. https://brilliant.org/wiki/

rouths-theorem/

26. How many pairs of integers (a, b) satisfy 1 ≤ a < 10013, 1 ≤ b < 10012, and 10013 | a3 + ab?

Proposed by: Jeffery Yu and Kevin Ren

Answer: 48271224

If we make it 0 ≤ a < N3 and 0 ≤ b < N2, then the count for N = 1001 is the product of the counts for N = 7, 11, 13
(thanks to the Chinese Remainder theorem). For p = 7, 11, 13, we look at the following cases:

• If gcd(a, p) = 1, then p3 | a2 + b. Thus, −b must be a quadratic residue mod p3, so it must be a quadratic residue

mod p. There are
p(p−1)

2
such residues between 0 and p2 − 1 that are coprime to p, and each value of b gives 2

values for a, so we get p(p− 1) choices for (a, b).

• If p | a, then we want p3 | ab. If vp(a) = 1, then there are p(p − 1) choices for a and 1 choice for b. If vp(a) = 2,
then there are p− 1 choices for a and p choices for b. If vp(a) = 3, then there is 1 choice for a and p2 choices for b.

Adding gives p(p− 1) + p(p− 1) + p(p− 1) + p2 = p(4p− 3). Multiplying this number for p = 7, 11, 13 gives a preliminary
answer of 1001 · 25 · 41 · 49.

Now we subtract a = 0 and b = 0. If a = 0 then b has 10012 choices. If b = 0 then 1001 | a, so a has 10012 choices.
Finally, there is one ordered pair with a = 0 and b = 0. Hence, by PIE, the answer is

1001 · (25 · 41 · 49− 1001− 1001) + 1 = 48271224.

https://brilliant.org/wiki/rouths-theorem/
https://brilliant.org/wiki/rouths-theorem/


27. You are participating in a virtual stock market, with many different stocks. For a stock S, there is a list of prices where
the ith number is the price of the stock on day i. On each day i, you are given the stock’s current price (in dollars),
and you can either buy a share of stock S, sell your share of stock S, or do nothing, but you may only take one of these
actions per day, and you may not have more than one share of stock S at a time. Each stock is independent, so for
example on the first day, you may buy a share of S and a share of T , and on the second day you may sell your share of
T .

At USMCA Trading LLC, you are given 2021! different stocks, where each stock’s list of prices corresponds to a unique
permutation of the first 2021 positive integers, to trade for 2021 days. You start out with M dollars, and at the end of
2021 days, you end up with N dollars. Assume M is large enough so that you can never run out of money during the
2021 days. What is the maximum possible value of N −M?

Proposed by: Derek Zhu

Answer: 2020·2022!
6

Let n = 2021. The strategy is that whenever the price of a stock on the next day is higher than that of today, you should
buy the stock today if you currently don’t have it and do nothing if you currently have it. Otherwise, you should sell
the stock today if you have it and do nothing if you currently don’t have it. This means for all n! permutations π of
(1, · · · , n), between each consecutive days i and (i+ 1), we are expected to make a profit of 0 or π(i+ 1)− π(i).

We need to evaluate
∑
π

∑n−1
i=1 (max(0, π(i + 1) − π(i))) across all permutations π. For all pairs of positive integers

(a, b) where 1 ≤ a < b ≤ n, there are (n − 1)! permutations that have prices on two consecutive days be a and b,
because there are (n− 1) ways to place the pair (a, b) and (n− 2)! ways to arrange the rest of the prices. Between each
of these consecutive days, we make a profit of (b − a) dollars, so the expression becomes

∑
1≤a<b≤n(n − 1)! · (b − a),

or (n − 1)! ·
∑n−1
i=1 (n − i) · i because there are (n − i) pairs (a, b) such that (b − a) = i. Then

∑n−1
i=1 (n − i) · i =

n ·
∑n−1
i=1 i−

∑n−1
i=1 i

2 = n · n(n−1)
2

− (n−1)n(2n−1)
6

=
n(n−1)(n+1)

6
.

Plugging in n = 2021, our final answer is (n− 1)! · (n−1)n(n+1)
6

, or 2020! ·
(2022

3

)
.

28. How many functions f : Z→ {0, 1, 2, · · · , 2020} are there such that f(n) = f(n+2021) and 2021 | f(2n)−f(n)−f(n−1)
for all integers n?

Proposed by: Kevin Ren

Answer: 202111

From n = −1 we get f(−1) = 0. Define g(n) = f(n) − f(n − 2) mod 2021; then we see that g(2n) = g(n) for all n.
We may partition the integers mod 2021 into equivalence classes C1, C2, · · · , Ck, where a, b belong to the same class if
b ≡ 2ia (mod 2021) for some integer i. For a class Ci, we may define g(Ci) = g(x) for any x ∈ Ci; this is well-defined
since g(2n) = g(n) for all n. The condition

∑2020
n=0 g(n) = 0 mod 2021 is equivalent to

k∑
i=1

|Ci|g(Ci) = 0 (mod 2021),

and this is the only condition on g: any g satisfying this condition gives rise to a unique f that satisfies the problem
conditions. Let C1 be the equivalence class containing 0: then clearly 0 is the only element of C1. Thus,

g(0) = −
k∑
i=2

|Ci|g(Ci) mod 2021,

so g(0) is uniquely determined from the other g(Ci). There are 2021 choices for each g(Ci) mod 2021, so our answer is
2021k−1. Thus, it suffices to compute k. To do this, we need to know something about the classes. Each class is of the
form {x, 2x, . . . , 2d−1x} mod 2021, so the size of the class is the smallest d such that 2dx ≡ x (mod 2021). To find the
smallest such d, we compute the order of 2 mod 43 and mod 47.

Since 47 ≡ −1 (mod 8), we get by quadratic reciprocity (or just direct computation) that 223 ≡ 1 (mod 47). Since 23 is
prime and 21 6= 1 (mod 47), we find the order of 2 mod 47 is 23.

We also compute 214 ≡ 1 (mod 43), while 27, 22, 21 are not 1 mod 43, so the order of 2 mod 43 is 14.

Thus, given an element x, we can compute the size of the class containing x. We will now count the number of classes
via casework on x:

Case 1. x is coprime to 2021. The least d with 2021 | 2d − 1 is 23 · 14, so the class of x has 23 · 14 elements. There are
φ(2021) = 42 · 46 residues mod 2021 that are coprime to 2021, so there are 42·46

23·14 = 6 classes involving elements coprime
to 2021.

Case 2. 43 | x but 47 - x. The least d with 2021 | 43(2d − 1) is 23, so the class of x has 23 elements. There are 46
residues mod 2021 that are divisible by 43, so there are 46

23
= 2 classes involving nonzero elements divisible by 43.

Case 3. 47 | x but 43 - x. The least d with 2021 | 47(2d − 1) is 14, so the class of x has 14 elements. There are 42
residues mod 2021 that are divisible by 47, so there are 42

14
= 3 classes involving nonzero elements divisible by 47.

Case 4. x = 0. The class of 0 is {0}, and there is one such class.

As a result, we get k = 6 + 2 + 3 + 1 = 12, so the answer is 2021k−1 = 202111.

29. Three circles ΓA,ΓB ,ΓC are externally tangent. The circles are centered at A,B,C and have radii 4, 5, 6 respectively.
Circles ΓB and ΓC meet at D, circles ΓC and ΓA meet at E, and circles ΓA and ΓB meet at F . Let GH be a common



external tangent of ΓB and ΓC on the opposite side of BC as EF , with G on ΓB and H on ΓC . Lines FG and EH meet
at K. Point L is on ΓA such that ∠DLK = 90◦. Compute LG

LH
.

Proposed by: Kevin Ren

Answer: 5
√

10
18

A

B

C
I

F

D

E

K

G H

L

P

First, a simple fact.

Lemma. ∠GDH = 90◦.

Proof. Let M be the midpoint of GH. Then by equal tangents, MG = MD and MD = MH, hence M is the center of
the circumcircle of GDH and ∠GDH = 90◦.

Let EF and BC meet at P . A lemma in projective geometry tells us that (B,C;P,D) = −1. Since ΓB and ΓC are
externally tangent at D, we see that P is the external center of homothety of ΓB and ΓC . Thus, GH also passes through
P .

Using Lemma, we see that ∠HDG = 90◦−∠CDH = 90◦−∠CHD = ∠DHG. Thus, the circumcircle of DGH is tangent
to PD. By Power of a Point, we thus get PF ·PE = PD2 = PG ·PH, so EFGH is cyclic. Thus, FG and EH intersect
on the radical axis of ΓB and ΓC , and so KD⊥BC.

Next, we claim that K lies on ΓA. Indeed, if FG meets ΓA at K1, then by looking at the homothety sending ΓB to ΓA,
we see that the tangent to ΓA at K1 is parallel to the tangent to ΓB at F , which is GH. Similarly, if EH intersects ΓA
at K2, then the tangent to ΓA at K2 is also parallel to GH. This means the tangents to Γ1 at K1 and K2 are actually
parallel, so K1 = K2. Thus, K lies on ΓA, as claimed.

Now, the condition ∠DLK = 90◦ (combined with DK⊥BC) implies that the circumcircle of DLK is tangent to BC at
D. Hence, we apply the radical axis theorem on ΓA, the incircle of ABC, and the circumcircle of DLK to show that LK
also passes through P . Now, Power of a Point tells us PL · PK = PE · PF = PG · PH, hence GHKL is cyclic. Hence,
L is the Miquel point of EFGH. As a result, we have LFG ∼ LEH, so LG

LH
= FG

EH
. We present two possible finishes.

Solution 1. Since PFG ∼ PHE, we have LG2

LH2 = FG2

EH2 = PF ·PG
PE·PH .

We have PG
PH

= rB
rC

= 5
6

, and by Menelaus on AEF , we get PF
PE

= BF
BA
· AC
EC

= rB
rA+rB

· rA+rC
rC

= 5
6
· 10

9
. Thus,

MF
ME

= FG
EH

= 5
6

√
10
9

= 5
√
10

18
.

Solution 2. (kevinmathz and Awesome guy) Power of a Point gives KF ·KG = KE ·KH. Note that ΓA and ΓB are
homothetic, so KF = 4a and FG = 5a for some a. Also, ΓA and ΓC are homothetic, so KE = 2b and EH = 3b for

some b. Thus, our PoP equation gives 4a · 9a = 2b · 5b, so 18a2 = 5b2. Our answer is FG
EH

= 5a
3b

= 5
√
10

18
.

30. I start with a sequence of letters A1A2 · · ·A2021A1A2 · · ·A2021A1A2 · · ·A2021. I go through i = 1, 2, 3, · · · , 6062 in order,
and for each i, I can choose to swap letters i and i+ 1. Let N be the number of distinct strings I can end up with. What
is the remainder when N is divided by 2017?

Proposed by: Freya Edholm, Derek Zhu, Kyle Lee, and Kevin Ren

Answer: 2014

This is a tricky Principle of Inclusion-Exclusion problem. Let n = 2021. For ease of reference, let the string be
A1A2 · · ·AnB1B2 · · ·BnC1C2 · · ·Cn, except we agree that Ai = Bi = Ci.

Without restrictions, there are 23n−1 possible strings: one for each possible swap. However, we overcount the possibilities
when we swap some Ai with Bi (or Bi with Ci) at some point in the algorithm. Thus, we subtract one from our count
for each such possibility.



(For example, if n = 2, then if we swap the first and second letters, resulting in A2A1B1B2C1C2, then swapping the
second and third letters doesn’t affect the string.)

Note that there is at most one i such that Ai can swap with Bi, and there is at most one j such that Bj can swap with
Cj . Now, we are ready to do PIE.

Suppose Ai can swap with Bi. If i = 1, then we have n forced swaps (Ak with Ak+1 for 1 ≤ k ≤ n−1, and A1 with B1).
Thus, we have 2n−1 possible swaps remaining, and so we have 22n−1 possibilities for the remaining swaps. If i 6= 1, then
we have n+1 forced swaps (Ai−1 does not swap with Ai, and we swap letters k and k+1 for i ≤ k ≤ n+ i−1). Thus, we
have 2n− 2 possible swaps remaining, and so we have 22n−2 possibilities for the remaining swaps. A similar argument
holds if Bj can swap with Cj , except we always have n+ 1 forced swaps and 22n−2 possibilities for the remaining swaps.
Thus, our overcount is

22n−1 + (2n− 1)22n−2 = (2n+ 1)22n−2.

Finally, we need add back possibilities where Ai swaps with Bi and Bj swaps with Cj . Then we must have 1 ≤ i < j ≤ n.
If i = 1, then we have n+ (n+ 1) forced swaps, and there are n− 1 choices for j, so we have (n− 1)2n−2 choices for the

remaining swaps. If i 6= 1, then we have (n+ 1) + (n+ 1) forced swaps, and there are
(n−1

2

)
choices for i, j, so we have(n−1

2

)
2n−3 choices for the remaining swaps. Thus, we need to add back

(n− 1)2n−2 +
(n− 1

2

)
2n−3 = (n− 1)(n+ 2)2n−4

possibilities.

Thus, by PIE, we can compute N = 23n−1− (2n+ 1) · 22n−2 + (n+ 2)(n− 1) · 2n−4. We have by Fermat’s little theorem
2n−5 ≡ 1 (mod n− 4), so

N ≡ 214 − 9 · 28 + 18 · 2 ≡ 2014 (mod 2017).

(Remark: N is also the number of compositions of 3n with no part greater than n. https://oeis.org/search?q=13%

2C149%2C1490&sort=&language=english&go=Search)

https://oeis.org/search?q=13%2C149%2C1490&sort=&language=english&go=Search
https://oeis.org/search?q=13%2C149%2C1490&sort=&language=english&go=Search

