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Each problem is worth 7 points.

1. Let P be a finite set of squares on an infinite chessboard. Kelvin the Frog notes that P may be tiled
with only 1 × 2 dominoes, while Alex the Kat notes that P may be tiled with only 2 × 1 dominoes.
The dominoes cannot be rotated in each tiling. Prove that the area of P is a multiple of 4.

Proposed by: Ankan Bhattacharya

With an arbitrary square set as the origin, color each square in P as follows:

• If both coordinates are even, color the square red.

• If the first coordinate is even and the second is odd, color the square yellow.

• If the first coordinate is odd and the second is even, color the square green.

• If both coordinates are odd, color the square blue.

Note that every 1× 2 domino covers either one red square and one green square, or one yellow square
and one blue square. Thus, the number of red squares is equal to the number of green squares, and
the number of yellow squares is equal to the number of blue squares.

Similarly, every 2× 1 domino covers either one red square and one yellow square, or one green square
and one blue square. Thus, the number of red squares is equal to the number of yellow squares, and
the number of green squares is equal to the number of blue squares.

As a result, each color is used on the same number of squares, implying that the number of squares is
a multiple of 4.

Remark. It is not true that the polygon is a disjoint union of 2 × 2 squares. As a counterexample,
consider the shape below.

2. Let ABC be an acute triangle with circumcircle Γ and let D be the midpoint of minor arc BC. Let
E,F be on Γ such that DE⊥AC and DF⊥AB. Lines BE and DF meet at G, and lines CF and DE
meet at H. Show that BCHG is a parallelogram.

Proposed by: Kevin Ren
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Note that

∠(AD,BE) =
B̂D + ÂE

2
=
ĈD + ÂE

2
= ∠(AC,DE) = 90◦.

Therefore, BE ⊥ AD. Also DF ⊥ AB, so G is the orthocenter of ABD. Similarly, H is the orthocenter
of ACD.

Let O be the circumcenter of ABC, and identify O with the zero vector. Then, ~G = ~A + ~B + ~D and
~H = ~A+ ~C + ~D, so ~G− ~H = ~B − ~C, which means BCHG is a parallelogram.

3. Call a polynomial f with positive integer coefficients triangle-compatible if any three coefficients of f
satisfy the triangle inequality. For instance, 3x3 + 4x2 + 6x+ 5 is triangle-compatible, but 3x3 + 3x2 +
6x+ 5 is not. Given that f is a degree 20 triangle-compatible polynomial with −20 as a root, what is
the least possible value of f(1)?

Proposed by: Kevin Ren

Answer: 4641

First, consider
f(x) = 11

(
x20 + 21x19 + 21x18 + · · ·+ 21x+ 21

)
+ x+ 9.

Note that f is triangle-compatible and f(−20) = 0, as required. This f achieves f(1) = 4641. Let us
show this is optimal.

Suppose f be triangle compatible. Divide f by the leading coefficient to get g, a monic polynomial
with rational coefficients. Write

g(x) = x20 + a19x
19 + a18x

18 + · · ·+ a1x+ a0.

Let ak = bk + 21 for k = 0, 1, . . . , 19. By the Triangle Inequality, |ai − aj | = |bi − bj | < 1 for all i, j.
Then,

g(x) =
[
x20 + 21x19 + · · ·+ 21x+ 20

]
+ 1 +

[
b19x

19 + b18x
18 + · · ·+ b1x+ b0

]
.

The first term has −20 as a root, so g(−20) = 0 is equivalent to

1 = 2019b19 − 2018b18 + · · ·+ 20b1 − b0. (1)

Let k be the smallest number such that ci = kbi is an integer for all i = 0, . . . , 19. |bi − bj | < 1 implies
|ci − cj | ≤ k − 1 for all i, j.

Lemma 1. If k ≤ 11, then c2 = c3 = · · · = c19 = 0.



Proof. Let i be the largest index such that ci 6= 0. Note that

k = 2019c19 − 2018c18 + · · ·+ 20c1 − c0,

and |cj | ≤ |ci|+ k − 1 for all j < i, while cj = 0 for all j > i. Therefore,

20i|ci| ≤ 20i−1|ci−1|+ · · ·+ 20|c1|+ |c0|+ k ≤
(
20i−1 + · · ·+ 20 + 1

)
(|ci|+ k − 1) + k.

This rearranges to

|ci| ≤
(k − 1)

(
20i + 18

)
+ 19

(18 · 20i + 1)
≤

10
(
20i + 18

)
+ 19

(18 · 20i + 1)
.

For i ≥ 2, the right-hand side is less than 1, contradiction.

When k ≤ 11, Lemma 1 implies c2 = c3 = · · · = c19 = 0, so k = 20c1 − c0. By the Triangle Inequality,
|c0| = |c0−c19| ≤ k−1, so 20|c1| = |k+c0| ≤ 2k−1. For k ≤ 10, this implies c1 = 0, so c0 = −k, which
is a contradiction. So, there are no solutions with k ≤ 10. If k = 11, the only solution is c0 = 9, c1 = 1,
which corresponds to the construction above.

We finish by showing k ≥ 12 does worse.

Lemma 2. b19 > − 1
2 .

Proof. If b19 ≤ − 1
2 , |bi − b19| < 1 implies − 3

2 < bi <
1
2 for each 0 ≤ i ≤ 18. Then, (1) implies

1

2
· 2019 ≤ 2019|b19| ≤ 2018|b18|+ 2017|b17|+ · · ·+ 201|b1|+ |b0|+ 1 <

3

2

(
2018 + · · ·+ 201 + 1

)
+ 1.

This is a contradiction.

Thus, b19 ≥ − 1
2 , so bi ≥ − 3

2 for each 0 ≤ i ≤ 18. If k ≥ 12, then

P (1) ≥ 12

(
1 +

(
21− 1

2

)
+ 19

(
21− 3

2

))
= 4704 > 4641.

Therefore, 4641 is minimal.

4. Suppose n > 1 is an odd integer satisfying n | 2n−1
2 + 1. Prove or disprove that n is prime.

Note: unfortunately, the original form of this problem did not include the red text, rendering it unsolv-
able. We sincerely apologize for this error and are taking concrete steps to prevent similar issues from
reoccurring, including computer-verifying problems where possible. All teams will receive full credit for
the question.

Proposed by: Kevin Ren

We claim that n = 3277 = 29 · 113 is a counterexample to the question. We first compute

k =
29 · 113− 1

2
≡ 112 + 14 · 226

2
≡ 56 + 7 · 2 ≡ 70 (mod 224). (2)

In particular, k ≡ 14 (mod 56). Using Fermat’s Little Theorem, we see that

2k ≡ 214 ≡ 32 · 24 ≡ −1 (mod 29) (3)

and
2k ≡ 270 ≡ 1510 ≡ (−1)5 ≡ −1 (mod 113) (4)

Thus, 29 · 113 | 2 29·113−1
2 + 1.



5. Alex the Kat and Kelvin the Frog play a game on a complete graph with n vertices. Kelvin goes first,
and the players take turns selecting either a single edge to remove from the graph, or a single vertex to
remove from the graph. Removing a vertex also removes all edges incident to that vertex. The player
who removes the final vertex wins the game. Assuming both players play perfectly, for which positive
integers n does Kelvin have a winning strategy?

Proposed by: Alexander Katz

Answer: All non-multiples of 3

Say a graph G is winning if the first player to move has a winning strategy, and losing otherwise.

Say vertices x, y ∈ G are a symmetric pair if the neighbor sets of x and y are the same (and in
particular, x and y are not adjacent). Let fx,y(G) denote the graph obtained from G by deleting x
and y, and all edges incident to them.

Lemma 1. If vertices x, y are a symmetric pair of graph G, then G is winning if and only if fx,y(G)
is winning.

Proof. We proceed by induction. Suppose the lemma is true for any subgraph of G. We define the
notation G−m, where m is a vertex or edge, to mean the graph produced by deleting m from G.

Suppose fx,y(G) is winning. Then, fx,y(G) − m is a losing graph for some m ∈ fx,y(G). The first
player can remove the same vertex or edge from G. Note that x, y is still a symmetric pair of G−m,
and fx,y(G)−m = fx,y(G−m). By induction, G−m is losing, so G is winning.

Conversely, suppose fx,y(G) is losing. Consider any move m ∈ G by the first player.

Suppose further that m ∈ fx,y(G). Since fx,y(G) is losing, fx,y(G) −m is winning. Moreover, x, y is
still a symmetric pair of G−m, and fx,y(G−m) = fx,y(G)−m. By induction G−m is winning.

Otherwise, m 6∈ fx,y(G), so m is either vertex x or y, or one of the edges from x or y to fx,y(G). The
second player will answer with move m′, defined as follows: if the first player removed an edge (x, v)
(resp. (y, v)), the second player removes edge (y, v) (resp. (x, v)), and if the first player removed x
(resp. y), the second player removes y (resp. x). By induction, the new graph G −m −m′ is losing
because fx,y(G) is losing. Since a move m′ exists for each m 6∈ fx,y(G), G−m is winning.

Therefore, G−m is winning for any m ∈ G, so G is losing.

We claim that Kelvin wins precisely when n is not a multiple of 3. This is evident for n = 1, 2, 3, so
we proceed again by induction, assuming the result for k < n.

If n ≡ 1 (mod 3), Kelvin removes any vertex. This leaves Alex with a complete graph on n − 1 ≡ 0
(mod 3) vertices, which by induction is losing. Therefore, Kelvin wins.

If n ≡ 2 (mod 3), Kelvin removes any edge (x, y). In the resulting graph G = Kn − (x, y), x, y is a
symmetric pair. Note that fx,y(G) = Kn−2 is losing because n − 2 ≡ 0 (mod 3). By Lemma 1, G is
also losing. Therefore, Kelvin wins.

If n ≡ 0 (mod 3), we will show Kelvin loses. If Kelvin removes any vertex, Alex gets a complete graph
on n− 1 ≡ 2 (mod 3) vertices, which by induction is winning. If Kelvin removes any edge (x, y), Alex
gets a graph G = Kn−(x, y), where x, y is a symmetric pair. By induction, fx,y(G) = Kn−2 is winning
because n− 2 ≡ 1 (mod 3), so G is winning by Lemma 1. Since any move leads to a winning position
for Alex, Kelvin loses.

6. Let P be a non-constant polynomial with integer coefficients such that if n is a perfect power, so is
P (n). Prove that P (x) = x or P is a perfect power of a polynomial with integer coefficients.

A perfect power is an integer nk, where n ∈ Z and k ≥ 2. A perfect power of a polynomial is a
polynomial P (x)k, where P has integer coefficients and k ≥ 2.

Proposed by: Kevin Ren

We write f = afe00 fe11 fe22 · · · f
ek
k , where a is an integer, f0 ≡ x and for all i = 1, . . . , k, fi is a non-

constant irreducible polynomial with fi(0) 6= 0 and ei is a positive integer. (Note that we may have
e0 = 0.)



Lemma 1. If g and h are relatively prime polynomials, then there are finitely many primes p such
that there exists a positive integer x satisfying p | gcd(g(x), h(x)).

Proof. By Bézout’s Lemma, we can find integer polynomials A(x), B(x) such that

A(x)g(x) +B(x)h(x) = N

for some integer N . So, p | N .

Lemma 2. If g is non-constant and irreducible with g(0) 6= 0, then there exist infinitely many primes
p such that for some positive integer xp, p - xp and vp(g(xp)) = 1.

Proof. Since g is irreducible, g is relatively prime to its derivative g′. Since g is non-constant, there
exist infinitely many primes p such that for some positive integer yp, p | g(yp). Since g, g′ are relatively
prime, by Lemma 1 there are only finitely many p for which we simultaneously have p | g′(yp). By
discarding these and the divisors of g(0), we get infinitely many primes p such that p | g(yp), p - g′(yp)
and p - g(0). If p | yp, then p | g(yp) implies p | g(0); therefore p - yp. For each of these p,

g(yp + p)− g(yp) ≡ pg′(yp) (mod p2).

So, if vp(g(yp)) = 1, we can take xp = yp, and if vp(g(yp)) ≥ 2, then vp(g(xp + p)) = 1 and we can take
xp = yp + p.

First suppose k ≥ 1. We claim that we can pick distinct primes pi and integers xi, for i = 0, 1, . . . , k,
such that:

(i) vpi(fi(xi)) = 1 for all i;

(ii) vpi(fj(xi)) = 0 for all i 6= j;

(iii) pi - xi for all i 6= 0;

(iv) pi is relatively prime to a for all i.

Indeed, Lemma 2 gives infinitely many pi satisfying (i) and (iii) for each i > 0. There are also infinitely
many pi satisfying (i) for i = 0: just take p0 to be any prime and x0 = p0. By Lemma 1, for each pair
(i, j) there are only finitely many primes p for which there exists x satisfying p| gcd(fi(x), fj(x)), and
by excluding these p we get (ii). We get (iv) by excluding only finitely many more primes.

By the Chinese Remainder Theorem, there exists a positive integer x such that x ≡ xi (mod p2i ). Let

N =
∏k
i=0 [pi(pi − 1)ei], and let t = xN+1. For each i = 0, 1, . . . , k,

vpi (f(t)) = e0(1 +N)vpi(x) +

k∑
j=1

ejvpi
(
fj
(
xN+1

))
,

where we use that vpi(a) = 0.

Consider first i > 0. Since pi - xi, x ≡ xi 6≡ 0 (mod pi). Thus vpi(x) = 0. For each j > 0 with j 6= i,
note that xN+1 ≡ x (mod pi) by Fermat’s Little Theorem, using that pi − 1|N . Therefore,

fj(x
N+1) ≡ fj(x) ≡ fj(xi) 6≡ 0 (mod pi),

and so vpi
(
fj
(
xN+1

))
= 0. Moreover, writing N = piN

′ where pi − 1|N ′, we have

vpi
(
xN+1 − x

)
= vpi

(
xpiN

′
− 1
)

= vpi

(
xN
′
− 1
)

+ 1 ≥ 2.

So,
fi
(
xN+1

)
≡ fi (x) ≡ fi(xi) (mod p2i ),



and so vpi
(
fi
(
xN+1

))
= 1. Putting this together, we get vpi(f(t)) = ei.

If i = 0, then vp0(x) = 1, while vp0
(
fj
(
xN+1

))
= 0 for j > 0 by the same argument as above. So,

vp0(f(t)) = e0(1 +N).

If f(t) is a perfect gth power, then g | vpi(f(t)) for each i = 0, 1, . . . , k, so

g | gcd(e0(1 +N), e1, . . . , ek) = gcd(e0, e1, . . . , ek),

where we use ei | N . So, f(t)
a = f0(t)e0f1(t)e1 · · · fk(t)ek is a perfect gth power. Thus, a is a perfect

gth power. So, f is a perfect gth power of a polynomial.

Next, if k = 0, then f(x) = axn for some n. If a = 1 then f(x) = xn, and we are done. Otherwise,
choose large primes p - a and q such that a is not a qth power; then f(pq) = apqn is a perfect gth power
for some g > 1. So, a and pqn are both gth powers. This gives g | qn. However, a is not a qth power,
so in fact g|n. Thus f is a gth power of a polynomial.

7. Let ABCD be a convex quadrilateral, and let ωA and ωB be the incircles of 4ACD and 4BCD, with
centers I and J . The second common external tangent to ωA and ωB touches ωA at K and ωB at L.
Prove that lines AK, BL, IJ are concurrent.

Proposed by: Ankan Bhattacharya

Solution 1, by Nikolai Beluhov. Let ωA touch AC, AD at X, Y , and let ωB touch BC, BD at
Z, T . By the Iran Lemma, P = KX ∩ LZ is the foot from C to IJ , and Q = KY ∩ LT is the foot
from D to IJ . In addition, define R = CD ∩ IJ ∩KL.
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To show that AK ∩BL lies on PQR, it suffices to prove (KP,KQ;KR,KA) = (LP,LQ;LR,LB). In
fact, we show both are equal to −1:

Lemma 1. (KP,KQ;KR,KA) = −1.

Proof. Projecting onto ωA, the cross-ratio equals (XY ;KS), where S is the second intersection of line
AK with ωA. Thus (XY,KS) = −1 as desired.

Solution 2, by Ankan Bhattacharya. Let X be the point on line IJ such that IJ (externally)
bisects ∠CXD. We prove that X is the concurrency point. Indeed, the claim that A, K, X collinear
reduces to the following (with relabeled point names):

Lemma 2. Let the incircle of 4ABC have center I and touch BC at D. Let X be a point so that XI
externally bisects ∠BXC. Then XI also (internally) bisects ∠AXD.

Proof. Apply Dual Desargues Involution Theorem from X on the (degenerate) complete quadrilateral
{AB,BD,DC,CA}.



Remark (Nikolai Beluhov). The above lemma may be proved without DDIT.

8. Let n,m be positive integers, and let α be an irrational number satisfying 1 < α < n. Define the set

X = {a+ bα : 0 ≤ a ≤ n and 0 ≤ b ≤ m}.

Let x0 ≤ x1 ≤ · · · ≤ x(n+1)(m+1)−1 be the elements of X. Show that for all i+ j ≤ (n+ 1)(m+ 1)− 1,
we have that xi+j ≤ xi + xj .

Proposed by: Ryan Alweiss and Yang Liu

Write xk = ak + bkα where 0 ≤ ak ≤ n and 0 ≤ bk ≤ m. Throughout the proof, assume that
xi + xj ≤ n+mα or else the result is trivial.

We will show the following.

Lemma 1. There are i elements of X in the range (xj , xi + xj ].

It is direct to see that Lemma 1 implies our desired conclusion. We now describe how to show it.

We will construct an injection f : [i] → X ∩ (xj , xi + xj ], i.e. we explicitly construct i elements of X
in the range (xj , xi + xj ]. Below we describe the injection. Here, [i] = {1, 2, · · · , i}.
f(k) is defined as follows.

(a) If aj + ak ≤ n and bj + bk ≤ m then f(k) = (aj + ak) + (bj + bk)α.

(b) If bj + bk > m then f(k) = (aj + ak + d(bj + bk −m)αe) + (m− bk)α.

(c) If aj + ak > n then define ` :=
⌈
aj+ak−n

α

⌉
. Define

hk := max
(
0, aj − b`αc) + (aj + ak − n− 1− b(`− 1)αc)

and then f(k) = hk + (bj + bk + `)α.

Lemma 2. If xi + xj ≤ n+mα, then the function f as described above sends [i] to X ∩ (xj , xi + xj ]
and is an injection.

Proof. We split the proof into its pieces.

Part 1. f is well-defined. The only thing to check here is that we cannot have both aj + ak > n
and bj + bk > m. Indeed, this would imply that xj + xk > n+mα, which is absurd.

Part 2. f is an injection. We can write f(k) = ck + dkα. We will analyze ck and dk to show that
f is an injection. In the first case where aj + ak ≤ n and bj + bk ≤ m note that aj ≤ ck ≤ n and
bj ≤ dk ≤ m. In the second case where bj + bk > m we have that ck ≥ aj and dk = m− bk < bj , hence
it does not overlap with the first case. Additionally, we can easily recover (ak, bk) from f(k) in the first
two cases. In the third case, we can check that hk < aj , hence does not intersect with the first case or
second case.

We now show that hk < aj . Indeed, we have by the definition of ` that b`αc ≥ aj + ak − n, hence
hk ≤ aj−1 < aj as desired. We now have to argue that if hk = hk′ then ak = ak′ – this would complete
the proof that f is injective. We do casework based on whether the the term max(0, aj − b`αc) in the
definition of hk evaluates to 0 or not. In the case where it evaluates to 0, it suffices to check that

(aj + ak − n− 1− b(`− 1)αc) < aj − b(`− 1)αc

which is equivalent to ak < n+ 1, which is true. In the other case, we check that

aj − b`αc+ (aj + ak − n− 1− b(`− 1)αc) < aj − b(`− 1)αc

which is equivalent to aj + ak − n− 1− b`αc < 0, which follows from the definition of `.



Part 3. xj < f(k) ≤ xj + xk for all k ∈ [i]. In the first case, it is obvious that xj < f(k) ≤ xj + xk.
In the second case, we can compute that

f(k) < aj + ak + (bj + bk −m)α+ 1 + (m− bk)α ≤ aj + bjα+ ak + bkα = xj + xk,

where we have used bk ≥ 1. Also, we have that

f(k) > aj + ak + (bj + bk −m)α+ (m− bk)α > aj + bjα = xj .

Now we analyze the third case. The case where max(0, aj − b`αc) = aj − b`αc follows similarly to the
previous case. Let us analyze the case where the max is 0.

Then

f(k) = hk + (bj + bk + `)α = xj +xk + (`α−b(`−1)αc− (n+ 1) ≤ xj +xk + (α+ 1− (n+ 1)) ≤ xj +xk

by the assumption 1 < α < n. Also, we have that

f(k) ≥ aj − b`αc+ (aj + ak − n− 1− b(`− 1)αc) + (bj + bk + `)α > xj + (aj + ak − n− 1− b(`− 1)αc.

We claim the right quantity is ≥ 0. Indeed, we have that

aj + ak − n > (`− 1)α

by the definition of α, hence
(aj + ak − n− 1− b(`− 1)αc > −1.

Now, it is ≥ 0 as it is an integer.

Part 4. f(k) ∈ X. It suffices to check that if we write f(k) = ck + dkα then 0 ≤ ck ≤ n and
0 ≤ dk ≤ m. This is trivial to check for the first case. For the second case, note that

ck = daj + ak + (bj + bk −m)αe = dxj + xk −mαe ≤ dn+mα−mαe = n

as desired. For the third case, note that dk = bj + bk + `. We have that

dkα = (bj + bk)α+ `α < (bj + bk)α+ (aj + ak − n) + α < (m+ 1)α

by the definition of `. Therefore, dk < m+ 1, so dk ≤ m as desired.

Remark. The problem actually holds for 1 < α < n+ 1. This needs one more detail. The only time the
upper bound enters into the computation is in the third paragraph showing f(k) ≤ xj + xk. If α > n
then ` = 1 always, so it reduces to α− (n+ 1) < 0, which is true.


