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Each problem is worth 7 points.

1. Kelvin the Frog and Alex the Kat are playing a game on an initially empty blackboard. Kelvin begins
by writing a digit. Then, the players alternate inserting a digit anywhere into the number currently
on the blackboard, including possibly a leading zero (e.g. 12 can become 123, 142, 512, 012, etc.).
Alex wins if the blackboard shows a perfect square at any time, and Kelvin’s goal is prevent Alex from
winning. Does Alex have a winning strategy?

Proposed by: Alexander Katz.

Answer: No .

Let n be the number currently on the blackboard. We claim that Kelvin can indefinitely avoid a
perfect square with the following strategy: if 100n + 76 is a perfect square, append a 3 to the end of
the number. Otherwise, append a 7. Note that Kelvin thus plays a 7 on his first turn.

Suppose that Alex can win the game with Kelvin following this strategy, and consider the turn on
which Alex wins. At the beginning of this turn, the number on the blackboard ends in either a 3 or a
7. Since neither 3 nor 7 are quadratic residues modulo 10 (i.e. no perfect square ends in a 3 or a 7),
Alex has not won at the beginning of his turn and cannot win by inserting a digit anywhere except the
end of the number. Similarly, the only quadratic residues modulo 100 with a 3 or 7 in the tens place
are 36 and 76, so Alex must win by appending a 6 to the end of the number.

By Kelvin’s strategy, if the number on the board ends with a 7, appending a 6 does not win. Therefore
the number on the board must end with a 3, and Alex wins by appending a 6. In particular, both
100n + 36 and 100n + 76 are perfect squares; call these a2 and b2 respectively. Note that n ≥ 7, so
b > a > 20 and b2 − a2 = (100n+ 76)− (100n+ 36) = 40. But, we also have b2 − a2 ≥ 212 − 202 = 41,
which is a contradiction, so Alex cannot win against Kelvin’s strategy.

Remark 1. A common attempted strategy for Kelvin is to insert a 7 each turn, preserving the invariant
that every other digit on the blackboard is 7. This is not a winning strategy: if Kelvin follows this
strategy, Alex can get the number 767376 = 8762.

2. Let n ≥ 2 be an even integer. Find the maximum integer k (in terms of n) such that 2k divides
(
n
m

)
for some 0 ≤ m ≤ n.

Proposed by: Kevin Ren.

Answer: blog2 nc .

Let n = aiai−1 · · · a1a0 with ai = 1 and a0 = 0 be the base 2 representation of n. Let v2(m) denote
the largest k such that 2k|m, and s2(m) be the number of ones in the binary representation of m. It
is well-known that v2(n!) = n− s2(n). So,

v2

((
n

m

))
= s2(n−m) + s2(m)− s2(n).

If we take m = 2i − 1, then n−m = ai−1ai−2 · · · a11, so s2(n−m) + s2(m)− s2(n) = i+ (s2(n) + 1−
ai)− s2(n) = i. Hence i = blog2 nc satisfies 2i |

(
n
m

)
.

There are a few ways to show optimality. We present three different solutions.



Solution 1: Basic NT. Let d = blog2 nc. Notice that

bxc+ byc+ 1 ≥ bx+ yc

for any real x, y, hence

v2

(
n!

m!(n−m)!

)
=

d∑
k=1

⌊ n
2k

⌋
−
⌊
n−m

2k

⌋
−
⌊m

2k

⌋
≤

d∑
k=1

1 = d.

Solution 2: Digit Sum. We will show:

Lemma 1. If m,n are arbitrary non-negative integers, then s2(m) + s2(n) + 1 ≤ s2(m + n + 1) +
log2(m+ n+ 1).

Proof. By induction on m+ n. Base case m+ n = 0 is trivial. For the inductive step, we casework on
parity of m,n. For the following we will use the facts s2(x+ 1) ≤ s2(x) + 1 and s2(2x+ 1) = s2(2x) =
s2(x) for any non-negative integer x.

• If m = 2a, n = 2b are both even, then s2(2a) + s2(2b) + 1 = s2(a) + s2(b) + 1 ≤ s2(a + b + 1) +
log2(a+ b+ 1) ≤ s2(a+ b) + log2(a+ b+ 1) + 1 ≤ s2(2a+ 2b+ 1) + log2(2a+ 2b+ 1).

• If m = 2a + 1, n = 2b + 1 are both odd, then s2(2a + 1) + s2(2b + 1) + 1 = s2(a) + s2(b) + 3 ≤
s2(a+ b+ 1) + log2(a+ b+ 1) + 2 ≤ s2(2a+ 2b+ 3) + log2(2a+ 2b+ 3).

• If m,n are different parities, without loss of generality let m = 2a, n = 2b+ 1. Then s2(2a+ 1) +
s2(2b)+1 = s2(a)+s2(b)+2 ≤ s2(a+b+1)+log2(a+b+1)+1 = s2(2a+2b+2)+log2(2a+2b+2).

This completes the inductive step.

Since s2(n) + 1 ≥ s2(n+ 1), we obtain s2(m) + s2(n) ≤ s2(m+ n) + log2(m+ n) for all m ≥ 0, n ≥ 1.
Now one of m,n−m is nonzero, hence s2(n)− s2(m)− s2(n−m) ≤ log2 n, proving the upper bound.

Solution 3: Base Carry. We claim s2(n)− s2(m)− s2(n−m) is the number of carries when adding m
and n −m in base 2. This is intuitively clear because a carry subtracts 2 from the current digit and
adds 1 to the next digit, e.g. 132 becomes 212 (which then becomes 1012 after another carry). Thus
the number of carries is the number of 1s annihilated, which is just s2(n)− s2(m)− s2(n −m). Now
if n has k digits, then carries can only happen in the 1st through (k − 1)-th spots. Hence there are at
most k − 1 ≤ blog2 nc carries.

Remark 1. Solution 2 is just a way to formalize the base carry in Solution 3 without actually carrying
out the base carry. Some people will like it; others will complain of using a hammer to swat a fly.

3. Let ABC be a scalene triangle. The incircle of ABC touches BC at D. Let P be a point on BC
satisfying ∠BAP = ∠CAP , and M be the midpoint of BC. Define Q to be on AM such that
PQ ⊥ AM . Prove that the circumcircle of 4AQD is tangent to BC.

Proposed by: Ankan Bhattacharya.
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Let H be the foot of the A-altitude. Then AHPQ is cyclic, so MQ ·MA = MP ·MH. Let the side
lengths of ABC be a, b, c, and let s = a+b+c

2 . We can compute the following directed lengths:

MP =
ac

b+ c
− a

2
=
a(c− b)
2(b+ c)

,

MH = c · c
2 + a2 − b2

2ac
− a

2
=
c2 − b2

2a
,

MD = (s− b)− a

2
=
c− b

2
.

Thus, MP ·MH = MD2, which means MQ ·MA = MD2. The converse of Power of a Point shows
the circumcircle of AQD is tangent to BC, as desired.

4. Find all functions f : R→ R such that for all x, y ∈ R,

f(f(x) + y)2 = (x− y)(f(x)− f(y)) + 4f(x)f(y).

Proposed by: Kevin Ren.

Answer: f(x) = x+ k for k ∈ R and f(x) = 0 .

Lemma 1. Either f(x) = 0 or f(x) is injective.

Proof. Suppose f(a) = f(b) for some a 6= b ∈ R. Then f(f(a) + y)2 = (a− y)(f(a)− f(y)) + 4f(a)f(y)
and f(f(b)+y)2 = (b−y)(f(b)−f(y))+4f(b)f(y). Thus (a−y)(f(a)−f(y)) = (b−y)(f(a)−f(y)). If
f(y) 6= f(a) for some y then a− y = b− y, which implies a = b, contradiction. Otherwise f(y) = f(a)
for all y implies f is constant. In this case, let f(x) = C. The condition gives C2 = 4C2, so C = 0.

Since f(x) = 0 is a solution, we restrict ourselves to the case where f is injective.

Lemma 2. f (−f(0)) = 0.



Proof. Let x = 0 and y = −f(0). Then

f(0)2 = f(0)(f(0)− f(−f(0))) + 4f(0)f(−f(0)) = f(0)2 + 3f(0)f(−f(0)),

so 3f(0)f(−f(0)) = 0. Thus f(0) = 0 or f(−f(0)) = 0. In either case f(−f(0)) = 0.

Let a = f(0); then f(−a) = 0. Now let x = −a. Then f(y)2 = (−a − y)(−f(y)) = (a + y)f(y). This
implies f(y) = 0 or f(y) = y + a. Since f is injective, f(y) 6= 0 whenever y 6= −a. So, for y 6= −a, we
have f(y) = y + a, and for y = −a we have f(y) = 0 = −a+ a. Thus f(y) = y + a for all a, and this
is a solution to the functional equation.

5. The number 2019 is written on a blackboard. Every minute, if the number a is written on the board,
Evan erases it and replaces it with a number chosen from the set

{0, 1, 2, . . . , d2.01ae}

uniformly at random. Is there an integer N such that the board reads 0 after N steps with at least
99% probability?

Proposed by: Brice Huang and Ryan Alweiss.

Answer: Yes .

Throughout this solution we consider the random variable an denoting the number written after the
nth minute; we extend the process infinitely by dictating that an+1 = 0 if an = 0. We will show that

P[an 6= 0] = O(cn)

for some constant c < 1. This will imply the result.

Let m be a very large absolute constant. We begin by proving the following lemma.

Lemma 1. If m is sufficiently large then,

E[ m
√
an+1|an] ≤ c m

√
an

for some constant c < 1 depending only on m.

Proof. First, assume 0 < an < 3. Assume also that 9
10 < c < 1.

If an = 1, E[ m
√
an+1|an] =

m√0+ m√1+ m√2+ m√3
4 < 3

4
m
√

3 < 9
10

m
√

1 if m is large enough.

If an = 2, E[ m
√
an+1|an] =

m√0+ m√1+...+ m√5
6 < 5

6
m
√

5 < 9
10

m
√

2 if m is large enough.

If an = 0 there is nothing to prove. Now suppose an ≥ 3; then

E[ m
√
an+1|an] =

1

d2.01ane+ 1

d2.01ane∑
a=0

m
√
a


≤ 1

d2.01ane+ 1

∫ d2.01ane+1

1

x
1
m dx

≤ 1

d2.01ane+ 1
· m

m+ 1
·
[
(d2.01ane+ 1)

1+1/m − 1
]

<
m

m+ 1
(2.01an + 2)

1/m
.

Thus, we have
E[ m
√
an+1|an]
m
√
an

<
m

m+ 1
· m

√
2.01an + 2

an
≤ m

m+ 1
· m

√
2.01 +

2

3
.

Since 2.01 + 2/3 < e = limm(1 + 1/m)m, we can set c = m
m+1 ·

m

√
2.01 + 2

3 < 1 for m sufficiently large,

as desired.



Taking the expectation of both sides of the above lemma gives

E[E[ m
√
an+1|an]] ≤ E[c m

√
an]

=⇒ E[ m
√
an+1] ≤ c · E[ m

√
an].

So, by induction, we obtain
E[ m
√
an] ≤ cn · m

√
2019.

But E[ m
√
an] ≥ P[an 6= 0] which implies the result.

6. A mirrored polynomial is a polynomial f of degree 100 with real coefficients such that the x50 coefficient
of f is 1, and f(x) = x100f(1/x) holds for all real nonzero x. Find the smallest real constant C such
that any mirrored polynomial f satisfying f(1) ≥ C has a complex root z obeying |z| = 1.

Proposed by: Kevin Ren.

Answer: 51 .

Let n = 100, and let f(x) = a0 + a1x+ · · ·+ a2nx
2n with ak = a2n−k. Define

g(θ) =
f(eiθ)

(eiθ)n
− 1 = an−1 · 2 cos θ + an−2 · 2 cos 2θ + . . .+ a0 · 2 cosnθ.

Thus eiθ is a root of f exactly when g(θ) = −1.

Claim 1. If f(1) ≥ 51, then we can choose θ such that g(θ) = −1.

Proof. A roots of unity argument across the 51st roots of unity gives that

0 = g(0) +

50∑
k=1

g

(
2πk

51

)

and so by pigeonhole there is some θ (of the form 2πk
51 ) such that

g(θ) ≤ −g(0)

50
= −f(1)− 1

50
≤ −1.

As g(0) > −1, by intermediate value theorem the conclusion follows.

In the converse direction,

Claim 2. There exist mirrored polynomials f with f(1) arbitrarily close to 51 such that g(θ) > −1 for
each θ.

Proof. Choose any real number λ < 1. Consider the choice

f(x) = 1 +
λ

51
(1 + 2x+ 3x2 + · · ·+ 49x49) +

λ

51
(x100 + 2x99 + 3x98 + · · ·+ 49x51).

As promised,

f(0) = 1 +
2λ

51
(1 + 2 + · · ·+ 50) = 1 + 50λ



which is arbitrarily close to 51. And the corresponding g satisfies

g(θ) =
2λ

51
(cos 50θ + 2 cos 49θ + · · ·+ 50 cos θ)

=
2λ

51

50∑
j=1

j∑
k=1

cos kθ

=
2λ

51

50∑
j=1

sin(n+ 1
2 )θ − sin θ

2

2 sin θ
2

=
2λ

51

(
1− cos 51θ

4 sin2 θ
2

− 51

2

)

=
λ

51

[
1− cos 51θ

1− cos θ
− 51

]
≥ −λ > −1

for all θ, ergo f has no roots on the unit circle.

7. Let AXBY be a convex quadrilateral. The incircle of 4AXY has center IA and touches AX and AY
at A1 and A2 respectively. The incircle of 4BXY has center IB and touches BX and BY at B1 and
B2 respectively. Define P = XIA ∩ Y IB , Q = XIB ∩ Y IA, and R = A1B1 ∩A2B2.

a. Prove that if ∠AXB = ∠AY B, then P , Q, R are collinear.

b. Prove that if there exists a circle tangent to all four sides of AXBY , then P , Q, R are collinear.

Proposed by: Ankan Bhattacharya. Solution by Kevin Ren.

Solution to part (a).
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Let ω be the circle with diameter XY . Let Y IA intersect ω at YA and XIA intersect ω at XA. Define
YB , XB similarly. By the Iran Incenter Lemma, YA, A1, A2, XA are collinear and YB , B1, B2, XB are



collinear. By Pascal’s theorem onXAXXBYBY YA, we have thatXAYA, XBYB , and PQ are concurrent.
But an easy angle chase shows AIA ‖ BIB , hence A1A2 ‖ B1B2, and so all three lines are actually
parallel.

Now we will show QR ‖ A1A2; the claim that PR ‖ A1A2 will follow similarly. Let d(L, `) be the
distance from L to `; it suffices to show that

d(Q,A1A2)

d(Q,B1B2)
=
d(R,A1A2)

d(R,B1B2)
. (?)

The last quantity equals A1A2

B1B2
by similar triangles; the first quantity equals

QYA sin∠XAYAY

QXB sin∠XXBYB
=
YAX sin∠IAXY
XBY sin∠IBY X

=
sin∠IAY X sin∠IAXY
sin∠IBY X sin∠IBXY

.

Recall the fact that in a triangle ABC, we have r = 4R sin A
2 sin B

2 sin C
2 . Now let r be the inradius

and R be the circumradius of AXY ; then

A1A2

XY
=

2r cos A2
2R sinA

=
r

2R sin A
2

= 2 sin
∠AXY

2
sin

∠AYX
2

and similarly
B1B2

XY
= 2 sin

∠BXY
2

sin
∠BYX

2
.

Hence, sin∠IAY X sin∠IAXY
sin∠IBY X sin∠IBXY

= A1A2/(2XY )
B1B2/(2XY ) = A1A2

B1B2
, showing that (?) is true. Thus, PR ‖ A1A2 and

QR ‖ A1A2, which means P,Q,R are collinear, as desired.

Solution to part (b).

X YZ

IA

IB

A

B

A1

A2

B1B2

P

Q

R

S
T D

First, the incircles ωA of AXY and ωB of BXY meet XY at the same point Z. Next, XA1 = XZ =
XB1 by equal tangents, so ∠XA1B1 = ∠XB1A1. This implies ∠IBB1A1 = ∠IAA1B1. Let A1B1

intersect ωA again at A3; then ∠IAA3A1 = ∠IAA1B1 = ∠IBB1A1, so IAA3 ‖ IBB1. Hence, A3 and
B1 are corresponding points on ωA and ωB , so A3B1 passes through the external center of homothety
H ′ between ωA and ωB . Thus A1B1 passes through H ′. Similarly A2B2 passes through H ′, so R = H ′.
There are multiple ways to finish from here.



Finish 1: Projective Geometry. Let IAIB meet PQ at R′. We aim to show R′ = R.

Let PQ intersect XY at D. Because PY,QX, IAR
′ are concurrent at IB and XY meets PQ at D,

we have by a well-known projective lemma that (P,Q;R,D) = −1. Projecting through X onto IAIB
gives (IA, IB ;R′, Z) = −1. Since Z is the internal center of homothety between ωA and ωB , R must
be the external center of homothety. This means R = R′, so P,Q,R are collinear.

Finish 2: Length Bash. We can show by computation that R is on I1I2 with RZ = 2r1r2
r1−r2 , where we

use directed lengths with ZIA = r1 and IBZ = r2.

Now P is the center of a circle ωP tangent to the extension of Y X past X, the extension of Y B past
B, and the extension of AX past X. Let ωP have radius r3 and be tangent to XY at S, and define
SX = s,XZ = z, ZY = y. Then a homothety at X relates ωA and ωP , and a homothety at Y relates

ωB and ωP . Hence, x
s = r1

r3
and y

y+x+s = r2
r3

. Solving, we get s = r2x(x+y)
r1y−r2x , so x+ s = (r1+r2)xy

r1y−r2x . Also

r3 = r1s
x = r1r2(x+y)

r1y−r2x , so x+s
r3

= (r1+r2)xy
r1r2(x+y)

. Similarly define ωQ with radius r4 and tangent to XY at

T , and Y T = t; then t = r2y(x+y)
r1x−r2y , y + t = (r1+r2)xy

r1x−r2y , r4 = r1r2(x+y)
r1x−r2y , and y+t

r4
= (r1+r2)xy

r1r2(x+y)
= x+s

r3
. Let

U be the internal center of homothety between ωP and ωQ, and V be the projection of U onto XY .
Then we can easily see SV

V T = r3
r4

= SZ
ZT , so V = Z. Furthermore, we can compute

UV = r3 ·
y + t

x+ y + s+ t
+ r4 ·

x+ s

x+ y + s+ t

= r3 ·
r1y − r2x

(r1 − r2)(x+ y)
+ r4 ·

r1x− r2y
(r1 − r2)(x+ y)

=
2r1r2
r1 − r2

= RZ,

so R = U . Hence, P,Q,R are collinear.

Remark 1. Some teams claimed that P,Q,R are always collinear by a Desargues’ theorem argument.
Actually this proves that A1A2, B1B2, and PQ are either all concurrent or all parallel.

8. Find all pairs of positive integers (m,n) such that (2m − 1)(2n − 1) is a perfect square.

Proposed by: Kevin Ren.

Answer: (3, 6), (6, 3), (m,m) for m ∈ N .

Let vp(n) be the exponent of p in the prime factorization of n. We will cite without proof several
well-known facts:

Lemma 1 (LTE). If p is an odd prime that divides a− b, then vp(a
n − bn) = vp(a− b) + vp(n).

Corollary 2 (CLTE). If p is an odd prime, p | an − 1, and p | a
mn−1
an−1 for some integers a,m, n, then

p | m.

Lemma 3. For any integers m,n, we have gcd(2m − 1, 2n − 1) = 2gcd(m,n) − 1.

Lemma 4. If a, b are positive integers with gcd(a, b) = 1 and ab is a perfect square, then a and b are
perfect squares.

We will prove:

Theorem 5. If m,n are positive integers, then 2mn−1
2m−1 is a perfect square only if either n = 1, or

m = 3 and n = 2.

Lemma 6. If 2k + 1 is a perfect square, then k = 3.

Proof. We have 2k + 1 = x2 for some integer x, so 2k = (x− 1)(x+ 1). Thus both x− 1 and x+ 1 are
powers of 2, which means x = 3. Then k = 3.

Proposition 7. If n is even, then n = 2 and m = 3.



Proof. Let n = 2k for some k. Write

22mk − 1

2m − 1
= (2mk + 1) · 2mk − 1

2m − 1
.

Since 2mk + 1 and 2mk − 1 are relatively prime, we have 2mk + 1 and 2mk−1
2m−1 are relatively prime.

Because they multiply to a perfect square, they are both perfect squares by Lemma 4. By Lemma 6,

we must have mk = 3, so k = 3 and m = 1, or m = 3 and k = 1. Only the second case makes 22mk−1
2m−1

a perfect square, so m = 3 and n = 2.

Therefore, we may assume that n is odd. Now we need an algebraic lemma:

Lemma 8. If n is odd, then m ≤ n− 2.

Proof. Recall the power series

1√
1− x

=

∞∑
n=0

cnx
n

where cn =
(2n

n )
4n . Squaring the series, we have

∑n
k=0 ckcn−k = 1 for all n. Now define r = n−1

2 and

P (x) =

r∑
k=1

xkcr−k.

Then

P (x)2 =

r∑
j=1

r∑
k=1

xj+kcr−jcr−k =

2r∑
k=0

x2r−k
∑

a+b=k,0≤a,b≤r−1

cacb <

2r∑
k=0

xk

and

(P (x) + 1)
2 ≥

2r∑
k=r+1

xk + 2xr >

2r∑
k=0

xk

whenever x ≥ 2, since
∑r−1
k=0 x

k = xr−1
x−1 < xr. If m > n − 2, then P (2m) is an integer, and so

xn−1
x−1 =

∑2r
k=0 x

k would be between two perfect squares. This implies 2mn−1
2m−1 is not a perfect square,

contradiction. Hence, in fact m ≤ n− 2.

We will also need the following smaller lemmas.

Lemma 9. If 2k − 1 is a perfect square for some k ≥ 1, then k = 1.

Proof. If k ≥ 2 then 2k − 1 ≡ 3 (mod 4) can never be a perfect square.

Lemma 10. Call a positive integer k p-suitable if all prime factors of k are greater than p. If p is
prime and k is p-suitable, then p - 2k − 1.

Proof. Trivial if p = 2. If p ≥ 3 then we have p | 2p−1 − 1. If p | 2k − 1 then p | 2gcd(p−1,k) − 1 = 1,
contradiction.

Proposition 11. 2p
akr−1

2pbk−1
cannot be a perfect square for any odd prime p and integers a > b ≥ 0, and

p-suitable integers k, r.

Proof. If a = k = r = 1 then b = 0 and our expression becomes 2p − 1, which is not a perfect square
by Lemma 9. Suppose not all of a, k, r are one; then pa−1kr 6= 1 and has all prime factors at least

p, so pa−1kr ≥ p. We have 2p
akr−1

2pbk−1
= 2p

a−1kr−1
2pbk−1

· 2p
akr−1

2pa−1kr−1
. Since k, r are p-suitable, by Lemma 10,

p - 2p
a−1kr−1. Hence, any prime divisor of the first term can’t divide the second term by CLTE. Thus,

the two terms are relatively prime. However, the second term is not a perfect square by Lemma 8 and

pa−1kr ≥ p, so by Lemma 4, 2p
akr−1

2pbk−1
is not a perfect square.



Proposition 12. If 2p
akr−1

2pak−1 is a perfect square for some prime p and integers a ≥ 0, and p-suitable

integers k, r, then so is 2kr−1
2k−1 .

Proof. Write
2p

akr − 1

2pak − 1
=

2kr − 1

2k − 1
· (2p

akr − 1)(2k − 1)

(2pak − 1)(2kr − 1)
.

We will verify that the second term on the RHS is an integer. Since 2p
ak − 1 and 2kr − 1 both divide

2p
akr − 1, it suffices to verify that vq(2

pak − 1) + vq(2
kr − 1) ≤ vq(2

pakr − 1) + vq(2
k − 1) whenever

q | 2pak−1 and q | 2kr−1. By Lemma 3, we have q | 2k−1. Then the inequality is actually an equality
by LTE.

Now we claim the two terms on the RHS are relatively prime. If q | 2kr−1
2k−1 then q | 2kr − 1. Now if

q | 2k − 1 then q - (2p
akr−1)(2k−1)

(2pak−1)(2kr−1) by LTE, and if q - 2k − 1, then q 6= p by Lemma 10. Thus by CLTE,

q - 2p
akr−1

2kr−1 . Hence, in either case the two terms on the RHS are relatively prime, which means they
are perfect squares by Lemma 4. In particular, the first term is a perfect square.

Finally, we prove our main result.

Proof of Theorem 5. We induct on the number of prime factors of m. If m = 1 then n = 1 by Lemma
9. Suppose m > 1 and let p be the least prime factor of m. If vp(n) = 0 then apply Proposition 12 to

reduce to the case
(

m
pvp(m) , n

)
. If vp(n) > 0 then p 6= 2 (since n is odd), so there are no solutions by

Proposition 11. This completes the inductive step and thus the proof.

Now we are ready to solve the problem. The answer is (3, 6), (6, 3), (m,m). Verify that (23−1)(26−1) =
7 · 63 = 212.

To see that no other (m,n) work, let d = gcd(m,n). Without loss of generality, let m < n. Then
gcd(2m− 1, 2n− 1) = 2gcd(m,n)− 1, so for (2m− 1)(2n− 1) to be a perfect square, we must have 2m−1

2d−1
and 2n−1

2d−1 be perfect squares as well. Because m < n, we have n > d. By Theorem 5, we have d = 3
and n = 6. This forces m = 3.


