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Each problem is worth 1 point.

1. At a math competition, a team of 8 students has 2 hours to solve 30 problems. If each problem needs
to be solved by 2 students, on average how many minutes can a student spend on a problem?

Proposed by: Jeffery Yu.

Answer: 16 .

There are a total of 2 · 30 = 60 solves distributed over 8 students, so each student solves 60
8 = 15

2
problems on average. Over 120 minutes, this averages to 120

15/2 = 16 minutes per problem.

2. A trifecta is an ordered triple of positive integers (a, b, c) with a < b < c such that a divides b, b divides
c, and c divides ab. What is the largest possible sum a+ b+ c over all trifectas of three-digit integers?

Proposed by: Kevin Ren.

Answer: 1736 .

The constraints a | b, b | c imply a ≤ 1
2b, b ≤

1
2c. So, heuristically we would like (a, b, c) = (x, 2x, 4x)

where x is as large as possible. This requires 4x | 2x2, so x is even. The largest such solution is
(248, 496, 992), for a sum of 1736.

Let us prove this is in fact the maximal sum a+ b+ c over all trifectas (a, b, c). If c ≤ 992, the bounds
a ≤ 1

2b, b ≤
1
2c imply (248, 496, 992) is optimal. If 992 < c < 1000, then we cannot have a = 1

2b and
b = 1

2c since, as we showed above, this requires a to be even and thus c to be a multiple of 8. So, in
this case a ≤ 1

2 ·
1
3c = 1

6c, and

a+ b+ c ≤
⌊

999

6

⌋
+

⌊
999

2

⌋
+ 999 = 1664 < 1736.

Therefore 1736 is the maximal sum.

3. Determine all real values of x for which

1
√
x+
√
x− 2

+
1

√
x+
√
x+ 2

=
1

4
.

Proposed by: Alexander Katz.

Answer: 257
16 .

Rationalizing the denominator, we have that

√
x−
√
x− 2

2
+

√
x+ 2−

√
x

2
=

1

4
.

Thus
√
x+ 2−

√
x− 2 = 1

2 . Rearranging yields

x+ 2 =

(√
x− 2 +

1

2

)2

= (x− 2) +
√
x− 2 +

1

4
.

Thus
√
x− 2 = 15

4 , and x = 257
16 .



4. How many six-letter words formed from the letters of AMC do not contain the substring AMC? (For
example, AMAMMC has this property, but AAMCCC does not.)

Proposed by: Kevin Ren.

Answer: 622 .

We use inclusion-exclusion. There are 36 six-letter words that can be formed from the letters of AMC.
Of these, there are 33 each with AMC in positions 1-3, 2-4, 3-5, and 4-6, and one with AMC in two of
these positions (AMCAMC). This produces a count of 36 − 4 · 33 + 1 = 622.

5. What is the largest integer with distinct digits such that no two of its digits sum to a perfect square?

Proposed by: Kevin Ren.

Answer: 98652 .

Observe that no two of a, 9 − a can be digits, providing an immediate upper bound of 5 digits. We
claim we can do no better than 98652. A better number must have first two digits 9 and 8. The
number cannot contain 7 because 7 + 9 = 16; hence the third digit must be 6. The next digit must be
5. Since 5 + 4 = 9 and 6 + 3 = 9, the last digit last digit cannot be larger than 2.

6. Seven two-digit integers form a strictly increasing arithmetic sequence. If the first and last terms of
this sequence have the same set of digits, what is the sum of all possible medians of the sequence?

Proposed by: Kevin Ren.

Answer: 385 .

The first and last integers have distinct digits and are reverses of each other. Let the first integer be

10a+ b; then the last integer is 10b+ a. The common difference 9b−9a
6 = 3(b−a)

2 is an integer, so b− a
is even. Hence b+ a is even. The median is 11(a+ b)/2. Since (a+ b)/2 ranges from 2 to 8 inclusive,
the possible medians are 22, 33, . . . , 88, whose sum is 7 · 22+88

2 = 385.

7. Triangle ABC has AB = 8, AC = 12, BC = 10. Let D be the intersection of the angle bisector of angle
A with BC. Let M be the midpoint of BC. The line parallel to AC passing through M intersects AB
at N . The line parallel to AB passing through D intersects AC at P . MN and DP intersect at E.
Find the area of ANEP .

Proposed by: Brice Huang.

Answer: 6
√

7 .

Note that ANEP is a parallelogram, so its area is [ANEP ] = AN · AP sinBAC. We will compute
each of these terms.

Since N is the midpoint of AB, AN = 4. By properties of parallel lines and the Angle Bisector
Theorem,

AP

PC
=
BD

DC
=
AB

AC
=

2

3
.

Thus AP = 2
5AC = 24

5 .

To compute sinBAC, we compute the area [ABC] two different ways. Since the semiperimeter of
ABC is 1

2 (8 + 10 + 12) = 15, by Heron’s Formula

[ABC] =
√

15(15−AB)(15−BC)(15− CA) = 15
√

7.

But also,

[ABC] =
1

2
AB ·AC sinBAC = 48 sinBAC.

Thus sinBAC = 5
√
7

16 .

Putting this all together, we have

[ANEP ] = 4 · 24

5
· 5
√

7

16
= 6
√

7.



8. The Fibonacci sequence F0, F1, . . . satisfies F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for all n ≥ 0.
Compute the number of triples (a, b, c) with 0 ≤ a < b < c ≤ 100 for which Fa, Fb, Fc is an arithmetic
progression.

Proposed by: Ankan Bhattacharya.

Answer: 101 .

For all b ≥ 2, Fb+1 > Fb, so Fb+2 = Fb+1 + Fb > 2Fb. Thus if b ≥ 2, Fa, Fb, Fc can only be an
arithmetic progression if c = b+ 1. Then,

Fa = Fb − (Fb+1 − Fb) = Fb − Fb−1 = Fb−2.

If b − 2 ≥ 3, this implies a = b − 2. Therefore, when b ≥ 5 the solutions (a, b, c) are (b − 2, b, b + 1),
where b ∈ {5, . . . , 99}. There are 95 solutions for this case.

If 2 ≤ b ≤ 4, we still must have c = b+1. We get the solutions (0, 2, 3), (1, 3, 4), (2, 3, 4), (1, 4, 5), (2, 4, 5).
If b < 2, we must have a = 0 and b = 1. This yields one additional solution (0, 1, 3), for a total of
95 + 6 = 101 solutions.

9. How many decreasing sequences a1, a2, . . . , a2019 of positive integers are there such that a1 ≤ 20192

and an + n is even for each 1 ≤ n ≤ 2019?

Proposed by: Jeffery Yu.

Answer:
(
2039190
2019

)
.

In order for an+n to be even, an and n must have the same parity. Let us define a0 = 20192+1, a2020 =
0. Then the 2020 adjacent differences bi = ai−1−ai (1 ≤ i ≤ 2020) are odd numbers with sum 20192+1.
Let us count the number of such (b1, . . . , b2020).

Define bi = 2ci − 1, for a positive integer ci. Then,

2020∑
i=1

bi =

2020∑
i=1

(2ci − 1) = 20192 + 1⇒
2020∑
i=1

ci =

(
2020

2

)
+ 1.

The last quantity is counted by placing 2019 dividers among the
(
2020
2

)
spaces between

(
2020
2

)
+1 items.

Thus the number of sequences is ((2020
2

)
2019

)
=

(
2039190

2019

)
.

10. Let a, b be positive real numbers with a > b. Compute the minimum possible value of the expression

a2b− ab2 + 8

ab− b2
.

Proposed by: Alexander Katz.

Answer: 6 .

By AM-GM,
a2b− ab2 + 8

ab− b2
= a+

8

b(a− b)
= (a− b) + b+

8

b(a− b)
≥ 3

3
√

8 = 6.

Equality occurs when a− b = b = 8
b(a−b) , i.e. b = 2, a = 4, so this minimum is attainable.

11. Let ABC be a right triangle with hypotenuse AB. Point E is on AB with AE = 10BE, and point D
is outside triangle ABC such that DC = DB and ∠CDA = ∠BDE. Let [ABC] and [BCD] denote

the areas of triangles ABC and BCD. Determine the value of [BCD]
[ABC] .

Proposed by: Kevin Ren.

Answer: 4 .



Let r = BE
BA = 1

11 , b = AC, and x be the distance from D to BC. Let M be the midpoint of AB.

Then DM bisects ∠ADE, so AD
DE = 1/2−r

1/2 = 1− 2r. If the perpendicular from D to AC is `, and the

perpendiculars from A,E to ` meet ` at K,L respectively, then KAD ∼ LED, so x+rb
x+b = AD

DE = 1−2r.

Thus x = b(1−3r)
2r , so [BCD]

[ABC] = x
b = 1−3r

2r = 8/11
2/11 = 4.

12. Determine the number of 10-letter strings consisting of As, Bs, and Cs such that there is no B between
any two As.

Proposed by: Kevin Ren.

Answer: 17664 .

We do casework on the number of As.

• If there are zero As, there are 210 = 1024 valid strings.

• If there is one A, there are 10 positions for the A and 2 settings for each non-A position, for
10 · 29 = 5120 total valid strings.

• If there are more than two As, there are
(
10
2

)
choices for the leftmost and rightmost As, and 2

settings for all positions: A or C for the positions between the leftmost and rightmost As, and B
or C for the others. This gives a count of

(
10
2

)
· 28 = 11520 valid strings.

This gives a final count of 1024 + 5120 + 11520 = 17664 valid strings.

13. The infinite sequence a0, a1, . . . is given by a1 = 1
2 , an+1 =

√
1+an

2 . Determine the infinite product
a1a2a3 · · · .
Proposed by: Brice Huang.

Answer: 3
√
3

4π .

Let the sequence θn be such that cos θn = an and θn ∈ [0, π2 ]. Then θ1 = π
3 and, by the cosine half-angle

rule, θn+1 = 1
2θn. The desired product is

P = a1a2a3 · · · =
∞∏
i=0

cos
θ1
2i
.

Consider the Nth partial product PN =
∏N−1
i=0 cos θ12i . Then

PN sin
θ1

2N−1
= sin

θ1
2N−1

N−1∏
i=0

cos
θ1
2i

=
sin(2θ1)

2N

by telescoping. Thus PN = sin(2θ1)

2N sin
θ1

2N−1

. Note that

lim
N→∞

2N−1 sin
θ1

2N−1
= lim
x→0

θ1 sinx

x
= θ1.

So, in the limit as N →∞, the denominator approaches 2θ1, and the infinite product is P = sin(2θ1)
2θ1

.
Plugging in θ1 = π

3 yields

P =

√
3/2

2π/3
=

3
√

3

4π
.

14. In a circle of radius 10, three congruent chords bound an equilateral triangle with side length 8. The
endpoints of these chords form a convex hexagon. Compute the area of this hexagon.

Proposed by: Kevin Ren.

Answer: 134
√

3 .



Let each chord’s intersections with the other two chords divide it into segments of length x, 8, x. By
equilateral triangle geometry, these intersections are 8√

3
from the center of the circle. By Power of a

Point on one of these intersections,

x(8 + x) = 102 −
(

8√
3

)2

= 100− 64

3
.

The hexagon is an equilateral triangle with side length 8 + 3x minus three equilateral triangles with
side length x. Thus its area is

√
3

4

[
(8 + 3x)2 − 3x2

]
=

√
3

4

[
6x2 + 48x+ 64

]
=

√
3

4

[
6

(
100− 64

3

)
+ 64

]
= 134

√
3.

15. Let P (x) be a polynomial with integer coefficients such that

P (
√

2 sinx) = −P (
√

2 cosx)

for all real numbers x. What is the largest prime that must divide P (2019)?

Proposed by: Brice Huang.

Answer: 1009 .

We first exhibit a P where 1009 is the largest prime dividing P (2019). Let P (x) = x2−1. This satisfies
the condition, because

P (
√

2 sinx) = 2 sin2 x− 1 = 1− 2 cos2 x = −P (
√

2 cosx).

We have P (2019) = 20192 − 1 = 2018 · 2020. The largest factor of this is 1009, as desired.

Next, we show that 1009 always divides P (2019). Plugging in x = π
4 yields P (1) = −P (1), so P (1) = 0.

Plugging in x = 3π
4 yields P (1) = −P (−1), so P (−1) = 0. Thus x2−1 | P (x), and 20192−1 | P (2019).

Since 1009 | 20192 − 1, we are done.

16. What is the product of the factors of 3012 that are congruent to 1 modulo 7?

Proposed by: Brice Huang.

Answer: 302214 .

First note that 3012 ≡ 1 (mod 7), so if d ≡ 1 (mod 7) and d is a divisor of 3012, then 3012

d ≡ 1 (mod 7).
Thus the geometric mean of all such factors d is 306. So, if N is the number of these factors, then the
answer is 306N . It remains to compute N .

Each factor of 30 is of the form 2a3b5c, where 0 ≤ a, b, c ≤ 12. Note that 3 is a primitive root modulo
7, and 2 ≡ 32 (mod 7), 5 ≡ 3−1 ≡ 35 (mod 7). Thus,

2a3b5c ≡ 32a+b+5c (mod 7),

and this is 1 (mod 7) if and only if 6 | 2a+ b+ 5c.

For given 0 ≤ a, b ≤ 12, there are 2 choices for c that satisfy c ≡ 2a + b (mod 6), except if 6 | 2a + b,
in which case there are three choices. In this last case, if a = 0, 3, 6, 9, 12 then there are 3 choices for
b; otherwise there are two. Thus in 13 · 2 + 5 = 31 cases there are three choices for c. Thus there are
132 · 2 + 31 = 369 valid triples (a, b, c), so N = 369. Thus the answer is (306)369 = 302214.

17. Tommy takes a 25-question true-false test. He answers each question correctly with independent
probability 1

2 . Tommy earns bonus points for correct streaks: the first question in a streak is worth
1 point, the second question is worth 2 points, and so on. For instance, the sequence TFFTTTFT is
worth 1 + 1 + 2 + 3 + 1 = 8 points. Compute the expected value of Tommy’s score.

Proposed by: Kevin Ren.



Answer: 24 + 1
225 .

Let us compute the expected score Tommy earns on question n. Tommy solves question n with
probability 1

2 , both questions n−1 and n with probability 1
22 , questions n−2 through n with probability

1
23 , and so on. By linearity of expectation, Tommy’s expected score on question n is

1

2
+

1

22
+ · · ·+ 1

2n
= 1− 1

2n
.

By linearity of expectation again, Tommy’s expected score on the test is

25∑
n=1

(
1− 1

2n

)
= 25−

(
1− 1

225

)
= 24 +

1

225
.

18. Two circles with radii 3 and 4 are externally tangent at P . Let A 6= P be on the first circle and B 6= P
be on the second circle, and let the tangents at A and B to the respective circles intersect at Q. Given
that QA = QB and AB bisects PQ, compute the area of QAB.

Proposed by: Kevin Ren.

Answer: 1008
65 .

Since QA = QB, Q lies on the radical axis of the circles, so PQ is the common external tangent. Let
M be the midpoint of PA and N be the midpoint of PB. Then MN intersects PQ at K such that
PK
PQ = 1

4 . Furthermore, let O1 be the center of the first circle and O2 be the center of the second circle;
then M lies on O1Q and N lies on O2Q. We also know QMPN is cyclic from the right angles at M
and N ; thus

PK

KQ
=

PK

MK
· MK

QK
=
QN ·QM
PN · PM

=
O1P ·O2P

QP 2
=

12

QP 2

by similar triangles. Thus QP = 6 and so the area of PAB, which is half the area of PAQB and thus
equal to the area of PMQN , is computed as 1

2 · (
6√
5
· 12√

5
+ 12√

13
· 18√

13
) = 1008

65 .

19. Let n be the largest integer such that 5n divides 122015 + 132015. Compute the remainder when
122015+132015

5n is divided by 1000.

Proposed by: Alexander Katz and Kevin Ren.

Answer: 17 .

By the Binomial Theorem,

122015 + 132015 = 122015 + (25− 12)2015 = 2015 · 122014 · 25−
(

2015

2

)
· 122013 · 252 + · · · ,

where the terms afterwards are all divisible by 56. We see from this expansion that n = 3. Let us now

calculate 122015+132015

53 modulo 125 and 8.

From the above expansion, we see that

122015 + 132015

53
≡ 403 · 122014 − 403 · 1007 · 122013 · 25 (mod 125),

since the remaining terms in the expansion are divisible by 125. The first term can be computed as

403 · 1214 ≡ 28 · 1728 · 144 ≡ 67 (mod 125),

where we use that 122000 ≡ 1 (mod 125). By computing that

403 · 1007 · 122013 ≡ 2 (mod 5),



we can see that the second term is 50 (mod 125). Thus

122015 + 132015

53
≡ 67− 50 ≡ 17 (mod 125).

In modulo 8, we can compute

122015 + 132015

53
≡ 52015

53
= 52012 ≡ 1 (mod 8).

By the Chinese Remainder Theorem, the answer is 17.

20. Kelvin the Frog lives in the 2-D plane. Each day, he picks a uniformly random direction (i.e. a
uniformly random bearing θ ∈ [0, 2π]) and jumps a mile in that direction. Let D be the number of
miles Kelvin is away from his starting point after ten days. Determine the expected value of D4.

Proposed by: Brice Huang.

Answer: 190 .

Let v1, . . . , v10 denote vectors representing Kelvin’s jump on each of the days. Then.

D4 = ||v1 + . . .+ v10||4 = [(v1 + . . .+ v10) · (v1 + . . .+ v10)]
2

=

10 + 2
∑
i<j

vi · vj

2

.

This expands as

D4 = 100 + 40
∑
i<j

vi · vj + 4
∑

i<j,i′<j′

(vi · vj)(vi′ · vj′).

Let θi,j denote the counterclockwise angle from vector vi to vector vj , so vi · vj = cos θi,j . Thus

D4 = 100 + 40
∑
i<j

cos θi,j + 4
∑

i<j,i′<j′

cos θi,j cos θi′,j′ .

The expected value of each term cos θi,j is 0. Moreover, the expected value of each term cos θi,j cos θi′,j′

is 0 unless (i, j) = (i′, j′). Thus,

E[D4] = 100 + 4
∑
i<j

E
[
cos2 θi,j

]
.

Finally, note that θi,j is uniformly distributed in [0, 2π], so E
[
cos2 θi,j

]
= 1

2 . Therefore,

E[D4] = 100 + 4 ·
(

10

2

)
· 1

2
= 190.

21. Let ABCD be a rectangle satisfying AB = CD = 24, and let E and G be points on the extension of
BA past A and the extension of CD past D respectively such that AE = 1 and DG = 3.

Suppose that there exists a unique pair of points (F,H) on lines BC and DA respectively such that
H is the orthocenter of 4EFG. Find the sum of all possible values of BC.

Proposed by: Ankan Bhattacharya.

Answer: 10
√

3 .

Let A(0, 0), B(24, 0), C(24, y), D(0, y), E(−1, 0), G(−3, y), H(0, x), and assume without loss of gen-
erality that y > 0. Then EG⊥FH implies FH has slope 2

y , so F (24, 48y + x). Also EH⊥FG implies

x · 48/y−y+x27 = −1. Let z = 48
y − y; then x(x + z) = −27, so x2 + xz + 27 = 0. This has exactly one

solution when z2 = 108, so z = ±6
√

3. Solve for y = ±2
√

3,±8
√

3. The valid choices for y = BC are
2
√

3 and 8
√

3, so the desired sum is 10
√

3.



22. Find the largest real number λ such that

a21+ · · ·+a22019 ≥ a1a2+a2a3+ · · ·+a1008a1009+λa1009a1010+λa1010a1011+a1011a1012+ · · ·+a2018a2019

for all real numbers a1, . . . , a2019. The coefficients on the right-hand side are 1 for all terms except
a1009a1010 and a1010a1011, which have coefficient λ.

Proposed by: Ankan Bhattacharya and Kevin Ren.

Answer:
√

1010
1009 .

Observe the identity

1009∑
i=1

a2i −
1008∑
i=1

aiai+1 =

(
1

2
+

1

2 · 1009

)
a21009 +

1008∑
i=1

(√
i+ 1

2i
ai −

√
i

2(i+ 1)
ai+1

)2

≥
(

1

2
+

1

2 · 1009

)
a21009.

This is tight when ai = i
1009a1009 for i = 1, . . . , 1009, so the constant factor on a1009 in this bound is

tight. Analogously, we have

2019∑
i=1011

a2i −
2018∑
i=1011

aiai+1 ≥
(

1

2
+

1

2 · 1009

)
a21011,

with equality when ai = 2020−i
1009 a1011 for i = 1011, . . . , 2020. Note that

2019∑
i=1

a2i −
1008∑
i=1

aiai+1 −
2018∑
i=1011

aiai+1 ≥
(

1

2
+

1

2 · 1009

)
a21009 + a21010 +

(
1

2
+

1

2 · 1009

)
a21011

=

[(
1

2
+

1

2 · 1009

)
a21009 +

1

2
a21010

]
+

[
1

2
a21010 +

(
1

2
+

1

2 · 1009

)
a21011

]
≥
√

1010

1009
a1009a1010 +

√
1010

1009
a1010a1011,

where the second bound is by AM-GM, with equality when a1009 = a1011 =
√

1009
1010a1010. Thus

λ =
√

1010
1009 satisfies the problem. Since equality is attainable for this λ, it is also optimal.

23. For Kelvin the Frog’s birthday, Alex the Kat gives him one brick weighing x pounds, two bricks
weighing y pounds, and three bricks weighing z pounds, where x, y, z are positive integers of Kelvin
the Frog’s choice.

Kelvin the Frog has a balance scale. By placing some combination of bricks on the scale (possibly on
both sides), he wants to be able to balance any item of weight 1, 2, . . . , N pounds. What is the largest
N for which Kelvin the Frog can succeed?

Proposed by: Brice Huang.

Answer: 52 .

Let us first show 52 is an upper bound. Let nx denote the number of bricks of weight x on the opposite
side of the item being balanced, minus the number of bricks of weight x on the same side of the item
being balanced. Similarly define ny, nz. Then, nx ∈ {−1, 0, 1}, ny ∈ {−2, . . . , 2}, and nz ∈ {−3, . . . , 3}.



Every weight that can be balanced can be written in the form

nxx+ nyy + nzz.

There are 3 · 5 · 7 = 105 such sums, of which at least one is 0. Moreover, if S > 0 can be expressed in
the above form, so can −S. Thus there are at most 105−1

2 = 52 distinct positive sums. So, N ≤ 52.

x = 1, y = 3, z = 15 allows Kelvin the Frog to balance any item of weight up to 52 pounds, so this
bound can be attained.

24. Let ABC be a triangle with ∠A = 60◦, AB = 12, AC = 14. Point D is on BC such that ∠BAD =
∠CAD. Extend AD to meet the circumcircle at M . The circumcircle of BDM intersects AB at
K 6= B, and line KM intersects the circumcircle of CDM at L 6= M . Find KM

LM .

Proposed by: Kevin Ren.

Answer: 13
8 .

Extend CL to intersect AD at P . The main result is that ACPK is a rhombus: we prove AB ‖ CL
by angle chasing, and then we show ACP is isosceles. Thus KM

LM = AM
PM .

Let N be the midpoint of KC. Then CN⊥AD, so AN = AC cos A2 . Thus AP = 2AC cos A2 . Let

the perpendicular to AC through M meet AC at Q; then it is well-known that AQ = AB+AC
2 , so

AM = AB+AC
2 cos A2

. Thus

AP

AM
=

2AC cos A2
AB+AC
2 cos A2

=
4AC

AB +AC
cos2(A/2) =

21

13
.

Thus AM
PM = 13

8 is our answer.

25. Determine the remainder when
2016∏
i=1

(i4 + 5)

is divided by 2017.

Proposed by: Brice Huang.

Answer: 2013 .

Let X denote the given expression, and S denote the set of quartic residues modulo 2017. As i ranges
from 1 to 2016, i4 attains each quartic residue four times. Thus,

X ≡

[∏
a∈S

(a+ 5)

]4
(mod 2017).

The polynomial
P (x) = x504 − 1 (mod 2017)

has roots precisely at the elements of S, so

P (x) ≡
∏
a∈S

(x− a) (mod 2017).

Therefore, ∏
a∈S

(a+ 5) =
∏
a∈S

(−5− a) = P (−5) = 5504 − 1 (mod 2017),

where the first equality uses the fact that |S| = 2016
4 = 504 is even. Therefore,

X = (5504 − 1)4 (mod 2017).



By the Quadratic Reciprocity Law,(
5

2017

)
=

(
2017

5

)
(−1)

2017−1
2 · 5−1

2 =

(
2

5

)
= −1,

so 5 is a quadratic nonresidue modulo 2017. Thus, 51008 ≡ −1 (mod 2017), and

(5504 − 1)2 = 51008 − 2 · 5504 + 1 ≡ −2 · 5504 (mod 2017),

and
X ≡ (−2 · 5504)2 ≡ 4 · 51008 ≡ −4 ≡ 2013 (mod 2017).

26. The permutations of OLYMPIAD are arranged in lexicographical order, with ADILMOPY being
arrangement 1 and its reverse being arrangement 40320. Yu Semo and Yu Sejmo both choose a
uniformly random arrangement. The immature Yu Sejmo exclaims, “My fourth letter is L!” while Yu
Semo remains silent. Given this information, let E1 be the expected arrangement number of Yu Semo
and E2 be the expected arrangement number of Yu Sejmo. Compute E2 − E1.

Proposed by: Kevin Ren.

Answer: 2892
7 .

First, we compute the EV of Yu Sejmo. It’s equivalent to random permutations σ of (1, 2, . . . , 8)
with σ(4) = 4. By counting the number of arrangements before σ, we get the arrangement number

of σ is 1 +
∑7
j=1(8 − j)!

∑8
k=j+1,aj>ak

1. Thus, the expected arrangement number is 1 +
∑7
j=1(8 −

j)!
∑8
k=j+1 P[aj > ak]. The probability P[σ(j) > σ(k)] is 1

2 except when one of j, k is 4. We also have

P[σ(k) > σ(4)] = 4
7 when k < 4 and P[σ(4) > σ(k)] = 3

7 when k > 4. Aggregating our contributions
gives

1 +

7∑
k=1

k · k!

2
+

7! + 6! + 5!− 4 · 4!

14
.

But
∑7
k=1

k·k!
2 = 8!−1

2 is well-known, and the EV of Yu Semo is simply 8!+1
2 . Thus E2 − E1 =

7!+6!+5!−4·4!
14 = 2892

7 .

27. For an integer n, define f(n) to be the greatest integer k such that 2k divides
(
n
m

)
for some 0 ≤ m ≤ n.

Compute f(1) + f(2) + · · ·+ f(2048).

Proposed by: Kevin Ren.

Answer: 16409 .

Let v2(n) denote the greatest integer k such that 2k | n. It is known that v2(n!) = n − s2(n), where
s2(n) is the number of ones in the binary representation of n. Thus

v2

((
n

m

))
= v2(n!)− v2(m!)− v2 ((n−m)!) = s2(m) + s2(n−m)− s2(n)

is the number of carries needed when adding the numbers m and n −m in base 2. From this result,
we see that f(n) = 0 if the binary representation of n contains only 1s (i.e. n = 2a − 1 for some a),
and otherwise f(n) is the number of digits before the final 0 in the binary representation of n.

Let us first compute
∑2047
n=1 f(n); we will add f(2048) separately. We can treat n = 1, . . . , 2047 as an

11-digit binary string. Suppose in n, the leading 1 is the ath digit from the right, and the last 0 is the
bth digit from the right. Then, f(n) = b− a. For each choice of (a, b), there are 2b−a−1 ways to choose
the digits between the leading 1 and final 0. Thus,

2047∑
n=1

f(n) =
∑

1≤a<b≤11

(b− a)2b−a−1.



We compute this as follows.

∑
1≤a<b≤11

b2b−a−1 =

11∑
b=2

b(2b−1 − 1) = 10 · 211 − 65 = 20415,

and ∑
1≤a<b≤11

a2b−a−1 =

10∑
a=1

a(211−a − 1) = 212 − 79 = 4017.

Thus
∑2047
n=1 f(n) = 20415− 4017 = 16398, and the final answer is 16398 + 11 = 16409.

Remark 1. The general formula for
∑2n

n=1 f(n) is (n − 3) · 2n + (2n + 3). For n = 0, 1, 2, 3 the values
are 1, 3, 9, 27. For n = 4 it is 77. This is a conspicuous example when engineer’s induction fails.

28. Alex the Kat plays the following game. First, he writes the number 27000 on a blackboard. Each
minute, he erases the number on the blackboard and replaces it with a number chosen uniformly
randomly from its positive divisors, including itself. Find the probability that, after 2019 minutes, the
number on the blackboard is 1.

Proposed by: Brice Huang. Solution by Kevin Ren.

Answer:
[
1− 3

22019 + 3
32019 −

1
42019

]3
.

Note that 27000 = 23 ·33 ·53. If the current number on the blackboard is 2a ·3b ·5c, the next number is
2a
′ · 3b′ · 5c′ , where a′, b′, c′ are uniformly random in {0, . . . , a}, {0, . . . , b}, and {0, . . . , c}, respectively.

Consider the game where Alex initially writes 3 on the blackboard, and every minute replaces the
current number (say, k) with a uniformly random number in {0, . . . , k}. The problem is equivalent to
asking: if Alex plays three copies of this new game in parallel, what is the probability that after 2019
minutes, all three boards have 0 written?

Let us find the probability that a single board will never have 0 written. In the first n − 1 numbers
written (n = 2019), let A,B,C be the number of threes, twos, ones respectively, and let K,L be the
(n−1)-th, n-th numbers respectively on the board. Note that K = K(A,B,C) is a function of A,B,C:
specifically:

• K = 1 if C ≥ 1;

• K = 2 if C = 0, B ≥ 1;

• K = 3 if C = 0, B = 0, A ≥ 1.

In other words, K equals 1, plus 1 if C = 0, plus another 1 if B = C = 0. The probability P (A =
a,B = b, C = c, L 6= 0) = 1

4 ·
1
4a ·

1
3b
· 1
2c ·K(a, b, c).

Define Q(a, b, c) = 1
4 ·

1
4a ·

1
3b
· 1
2c . Writing K =

∑K
k=1 1 and changing order of summation, our desired

probability ∑
a+b+c=n−1,k

P (A = a,B = b, C = c, L 6= 0)

can be expressed as ∑
a+b+c=n−1

Q(a, b, c) +
∑

a+b=n−1

Q(a, b, 0) +Q(n− 1, 0, 0).

Note that

Q(n− 1, 0, 0) =
1

4n∑
a+b=n−1

Q(a, b, 0) =
1

4
·

1
3n −

1
4n

1
3 −

1
4

=
3

3n
− 3

4n



∑
a+b+c=n−1

Q(a, b, c) =
1

4

n−1∑
a=0

1

4a
· 1

1
2 −

1
3

·
(

1

2n−a
− 1

3n−a

)

=
3

2
·
( 1

2n+1 − 1
4n+1

1
2 −

1
4

−
1

3n+1 − 1
4n+1

1
3 −

1
4

)
=

3

2n
− 6

3n
+

3

4n

Thus the probability no zero is written is 3
2n−

3
3n+ 1

4n . So, the desired probability is
(
1− 3

2n + 3
3n −

1
4n

)3
.

29. Let n be a positive integer, and let a1, . . . , an, b1, . . . , bn be real numbers. Alex the Kat writes down
the n2 numbers of the form min(ai, aj), and Kelvin the Frog writes down the n2 numbers of the form
max(bi, bj).

Let xn be the largest possible size of the set {a1, . . . , an, b1, . . . , bn}, such that Alex the Kat and Kelvin
the Frog write down the same collection of numbers. Determine the number of distinct integers in the
sequence x1, x2, . . . , x10,000.

Proposed by: Ankan Bhattacharya.

Answer: 11 .

Claim 1. xn equals one less than the number of representations n2 = a2 + b2, with a, b ∈ Z≥0.

Proof. Let ck be the number of solutions to ai ≥ k, and let dk be the number of solutions to bi ≤ k.
Then the number of times Alex writes down k is c2k − c2k+1, and the number of times Kelvin writes
down k is d2k − d2k−1. Thus c2k + d2k−1 = c2k+1 + d2k. The quantity c2k + d2k−1 is thus constant for all k, so
it equals N2 if we take k large enough. Thus the maximum number of distinct ai is one less than the
number of possible ck values. But the set of {ai} contains the set of {bi} since max(bi, bi) = bi must
be the value of some aj , which implies the result.

Let vp(n) denote the exponent of p in the prime factorization of n. By a well-known fact,

xn =
∏

p≡1 (mod 4)

(2vp(n) + 1).

We are interested in p = 5, 13, 17, 29, 37, 41, . . ..

First, since 5 · 13 · 17 · 29 > 10000, we can only have up to three terms in our product. To optimize, we
prefer having the lowest primes, i.e. 5, 13, 17.

• Case 1: one term. Then since 56 > 10000, we get xn = 1, 3, 5, 7, 9, 11.

• Case 2: two terms. Then since 5 · 133 > 10000, 52 · 133 > 10000, 53 · 132 > 10000, 55 · 13 > 10000,
we get xn = 3, 9, 27, 5, 15, 25, 7, 21.

• Case 3: three terms. Then since 53 · 13 · 17 > 10000, 5 · 132 · 17 > 10000, and 5 · 13 · 172 > 10000,
we get xn = 27, 45.

Thus the only possible values of xn with 1 ≤ n ≤ 10000 are 1, 3, 5, 7, 9, 11, 15, 21, 25, 27, and 45, for
an answer of 11.

30. Let ABC be a triangle with BC = a, CA = b, and AB = c. The A-excircle is tangent to BC at A1;
points B1 and C1 are similarly defined.

Determine the number of ways to select positive integers a, b, c such that

• the numbers −a+ b+ c, a− b+ c, and a+ b− c are even integers at most 100, and

• the circle through the midpoints of AA1, BB1, and CC1 is tangent to the incircle of 4ABC.



Proposed by: Ankan Bhattacharya.

Answer: 3807 .

Let x = s − a, y = s − b, z = s − c, where s = a+b+c
2 . Let AA1, BB1, CC1 intersect at P , which

has barycentric coordinates (xs ,
y
s ,

z
s ), and let the incircle ω be tangent to BC,CA,AB at D,E, F

respectively. If D′ is the antipode of D in ω, then it is well-known that D′ is on AA1 and AD′ = PA1,
hence the midpoint of AA1 is the midpoint of PD′. Similar conclusions hold for the midpoint of BB1

and CC1, so the circle through the midpoints of AA1, BB1, CC1 is a dilation of ω with scale factor 1
2

with respect to P .

If the two circles are internally tangent, they must be internally tangent at P . Suppose P lies on minor
arc ÊF in ω. Since P is also on AA1, we have P = D′, and so P is the midpoint of AA1. By mass
points (A has mass x and A1 has mass y + z), we get x = y + z. Similar results hold if P lies on
another minor arc in ω, in which case we get y = x+ z or z = x+ y.

If the two circles are externally tangent, the condition becomes IP = 3r, where r is the inradius. By
the barycentric distance formula,

− 1

4s2
(
(s− 3x)(s− 3y)(x+ y)2 + (s− 3y)(s− 3z)(y + z)2 + (s− 3z)(s− 3z)(x+ z)2

)
= 9r2.

Using Heron’s formula r2s2 = xyzs, we may simplify to

s2
∑

(x+ y)2 − 3s
∑

(x+ y)3 + 9
∑

xy(x+ y)2 = −36xyzs

where the sums are symmetric sums (e.g.
∑
x = x + y + z,

∑
x2y = x2y + x2z + · · · + y2z). The

identity ∑
xy(x+ y)2 = (x+ y + z)(

∑
x2y − 2xyz)

allows us to cancel s = x+ y + z from both sides to get

s
∑

(x+ y)2 − 3
∑

(x+ y)3 + 9(
∑

x2y − 2xyz) = −36xyz.

By writing
∑

(x+ y)3 = 2x3 + 2y3 + 2z3 + 3
∑
x2y, we can simplify to

s
∑

(x+ y)2 = 6(x3 + y3 + z3 − 3xyz) = 6s(x2 + y2 + z2 − xy − yz − zx).

Cancel another s from both sides to get

2
∑

x2 + 2
∑

xy = 6
(∑

x2 −
∑

xy
)

∑
x2 = 2

∑
xy

Using the quadratic formula to solve for z, we find this is equivalent to ±
√
x ± √y ±

√
z = 0. In

summary, the two circles are tangent when ±x± y ± z = 0 or ±
√
x±√y ±

√
z = 0. Furthermore, our

conditions on x, y, z give 1 ≤ x, y, z ≤ 50.

Suppose ABC is scalene and assume WLOG that x < y < z. If x+ y = z then we get 1 + 1 + 2 + 2 +
· · ·+ 24 + 24 = 600 cases. If

√
x+
√
y =
√
z then (x : y : z) can be one of:

(1 : 4 : 9), (1 : 9 : 16), (1 : 16 : 25), (1 : 25 : 36), (1 : 36 : 49), (4 : 9 : 25), (4 : 24 : 49), (9 : 16 : 49).

They correspond to 5, 3, 2, 1, 1, 2, 1, 1 cases respectively. Thus there are 616 solutions (x, y, z) with
x < y < z. Removing the assumption that x < y < z, we get 616 · 6 = 3696 solutions for scalene ABC.

Suppose ABC is isosceles. Assume WLOG that x = y < z. If x + y = z then we get 25 solutions. If√
x+
√
y =
√
z then z = 4x, which yields 12 solutions. By symmetry, there are a total of 3(25+12) = 111

solutions where ABC is isosceles.

The final answer is 3696 + 111 = 3807.


